• Title/Summary/Keyword: 박리하중

Search Result 103, Processing Time 0.027 seconds

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.

A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates (CFRP 사교적층판의 충격손상에 관한 연구)

  • 배태성;입야영;양동률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Carbon fiber reinforced plastics(CFRP) have gained increased application in aerospace structures because of their specific strength and stiffness, but are sensitive to impact-induced damage. An experimental investigation was carried out to evaluate the impact resistance of CFRP according to the ply angle. The specimens of angle ply laminate composites were employed with [0.deg. $_{6}$/ .deg.$_{10}$/0.deg.$_{6}$], in which 6 kinds of ply angle such as .deg.=15.deg., 30.deg., 45.deg., 60.deg., 75.deg. and 90.deg. were selected. The impact tests were conducted using the air gun type impact testing machine by steel balls of diameter of 5 mm and 10 mm, and impact-induced damages were evaluated under same impact speed of V=60m/s. The impact damaged zones were observed through a scanning acoustic microscope (SAM). The obtained results were summarized as follows: (1) Delaminations on the interfacial boundaries showed th directional characteristics to the fiber directions. The delamination area on the impact side (interface A) was considerably smaller compared to that of the opposite side (interface B). (2) Cracks corresponding to other delaminations than those mentioned in SAM photographs were also seen on the impact damaged zone. (3) The delamination patterns were affected by the ply-angle, the dimensions of the specimen, and the boundary conditions. (4) The impact damaged zone showed zone showed the delamination on the interfacial boundaries, transverse shear cracks of the surface layer, and bending cracks of the bottom layer.r.r.r.

Weathering and Crack Development in the Rocks of Protecting-Chamber for Standing-Buddha of Mireuk-ri Temple site at Jungwon (중원 미륵리사지 입상석불 보호석실의 암석의 풍화와 균열의 발달양상)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.7 no.2
    • /
    • pp.68-79
    • /
    • 1998
  • The protecting-chamber for a standing Buddha of Mireuk-ri temple site at Jungwon is composed of granite of Cretaceous age which mainly consists of quartz, perthite, plagioclase, and biotite with minor amounts of muscovite, apatite, chlorite, sericite and opaque mineral. There are abundant cracks which may be developed by strong weathering and differential loading by structural unbalances of the whole protecting-chamber. Cracks can be divided into three types based on genesis as those formed by exfoliation, intrinsic, and pressure. The exfoliation occurred along the onion structure of the granite. The pressure cracks are generally superimposed on the exfoliation ones, which might be developed by structural unbalance of the protecting-chamber resulted from differential loading in places. The structural unbalance may be due to change in physical properties of the rocks according to strong weathering, differential settling of basement soil by difference in loading in places of protecting-chamber, westward creep of the basement soil below the West wall and related different resistance of the basement soil against the loading, and partial depression of the West wall. For the conservation of the protecting-chamber, it must be considered the method of stabilizing the basement and treatment of the cracks.

  • PDF

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

Planar (Rolling) Shear Strength of Structural Panels Using 5-point Bending Test (5점 휨하중 시험법을 사용한 구조용 판넬의 굴림전단강도)

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.425-436
    • /
    • 2018
  • This study was conducted to evaluate the planar (rolling) shear strength of OSB (oriented strand board) panels and domestic plywood through 5 point bending test method in ASTM D2718 standard. The test specimens were prepared in parallel and perpendicular direction to major axis (along the length of panels) and tested up to failure, and failure modes were also examined. From the test results, rolling shear strength were found to be $1.32{\sim}1.94N/mm^2$ in parallel to major axis, and $1.46{\sim}1.99N/mm^2$ in perpendicular to major axis respectively. Little difference was found between parallel and perpendicular direction of rolling shear strength. There were no statistically significant differences in rolling shear strength between Canadian OSB and domestic plywood in the parallel direction, and between Chilean OSB and domestic plywood in the perpendicular direction. The shear failure was observed in all tested OSB panels, whereas shear failure, glue line delamination, and bending combined with shear failure were observed in the domestic plywood.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Glass Fiber Sheets (유리섬유시트로 보강된 RC 보의 휨 거동에 관한 연구)

  • Kim, Seong-Do;Cho, Baik-Soon;Seong, Jin-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.388-395
    • /
    • 2009
  • To investigate the flexural behavior of RC beams strengthened with glass fiber sheets, 1 control beam and 8 strengthened beams (4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of glass fiber sheets and the existence of U-shaped band, etc. The maximum load was increased by 48% and 34%, and the flexural rigidity by 920% and 880% for NU-beam and U-beam, respectively, compared with those of the control beam. The ductility ratios were 1.43$\sim$2.60 for NU-beam and U-beam. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The experimental and analytical results were well agreed.

Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments (동결융해 환경에 노출된 철근콘크리트 보의 휨 거동특성)

  • Jang, Gwang-Soo;Yun, Hyun-Do;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.126-134
    • /
    • 2009
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freeze-thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the flexural behavior of RC beams exposed to freeze-thawing environments. To compare the difference in flexural behavior of RC Beams, limited tests were conducted under different types of Longitudinal steel ratio and freeze-thawing cycles. For this purpose, fourteen small-scale RC beams ($100mm{\times} 100mm {\times}600mm$) were strengthened in monotonic and cyclic loadings, subjected to up to 150, 300 cycles freeze-thawing from $-18{\sim}4^{\circ}C$. It is thought that experimental results will be used as basic data to evaluate flexural behavior of RC beams exposed to freeze-thawing.

A Study on the Resistance Against Environmental Loading of the Fine-Size Exposed Aggregate Portland Cement Concrete Pavements (소입경 골재노출콘크리트포장의 환경하중 저항성에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo;Chae, Sung-Wook;Bae, Jae-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2009
  • Fine-size exposed aggregate portland cement concrete pavements (FEACP) have surface texture of exposed aggregate by removing upper 2$\sim$3mm mortar of surface of which curing is delayed by using delay-setting agent. FEACPs have advantages of maintaining low-noise and adequate skid-resistance level during the performance period than general portland cement concrete pavements. It is necessary to ensure the durability environmental loading to prevent unexpected distress during the service life of FEACP. In the process of curing, volume change accompanied change in by moisture and temperature could be an important cause of crack in concrete to construct for successful FEACP, The use of chloride containing deicer may accelerate defects of concrete pavement, such as crack and scaling. This study aim to evaluate environmental loading resistance of FEACP, based on the estimation of shrinkage-crack-control-capability by moisture evaporation and scaling by deicer in freeze-thaw reaction.

  • PDF

Effect of Micro-bolt Reinforcement for Composite Scarf Joint (복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구)

  • Lee, Gwang-Eun;Sung, Jung-Won;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • The reinforcement effect of micro-bolt for a bonded scarf joint was investigated. Three scarf ratios of 1/10, 1/20, and 1/30 were considered to examine the effect of scarf patch configuration on joint strength. To maintain the same density of micro-bolt, 16, 32, and 48 bolts were installed in the scarf joint specimens with scarf ratios of 1/10, 1/20, and 1/30, respectively. Tests were also carried out on the joints that are bonded with only adhesive and that are fastened with only micro-bolts to obtain reference values. The average failure loads of the adhesive joints with scarf ratios of 1/10, 1/20, and 1/30 were 29.7, 39.6, and 44.8 kN, respectively. In case of micro-bolt reinforcement, the failure loads at the same scarf ratios were 28.4, 37.2, and 40.1 kN, respectively, which corresponds to 96, 94, and 90% of the pure adhesive joint failure loads. In the case of using only micro-bolts, the failure loads were only 13-25% of the average failure loads of pure adhesive joints. Fatigue test was also conducted for the joints with scarf ratio of 1/10. The results show that the fatigue strength of hybrid joints using both adhesive and microbolts together slightly increased compared to the fatigue strength of adhesive joint, but the rate of increase was small to 2-3%. Through this study, it was confirmed that the reinforcement effect of micro-bolt is negligible in the scarf joints where shear stress is dominating the failure, unlike in the structure where peel stress is dominant.

Damage Behavior and Residual Bending Fatigue Strength of CFRP Composite Laminates Subjected to Impact Loading (충격하중을 받은 CFRP 적층판의 손상거동과 잔류굽힘피로강도)

  • Im, Kwang-Hee;Yang, In-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1836-1842
    • /
    • 1996
  • In this paper, static and fatigue bending strengths of CFRP(carbon fiber reinforced plastic laminates having impact damage(FOD) are evaluated. Composite laminates used for this experiment are CF/EPOXY and CF/PEEK orthotropy laminated plates, which have two-interfaces[${0^0}_4{90^0}_4}$]$_sym$. A steel ball launched by the air gun colides against CFRP laminates to generate impact damages. The damage growth during bending fatigue test is observed by the scanning acoustic microscope(SAM). When the impacted side is compressed, the residual fatigue bending strength of CF/PEEK specimen P is greater that that of CF/EPOXY SPECIMEN B. On the other hand, when the impacted side is in tension, the residual fatigue bending strength of CF/PEEK speicemen P is smaller than that of CF/EPOXY specimen B. In the case of impacted-side compression, fracture is proposed from the transverse crack generated near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-b delamination in the case of impacted-side tension.