• Title/Summary/Keyword: 박강판 성형

Search Result 8, Processing Time 0.018 seconds

The Study on the Design and Manufacturing of Combined Die for Both Sides of Front Fender (Front Fender LH/RH 일체 금형설계 및 제작에 관한 연구)

  • Jung, Hyo-Sang;Lee, Seoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.24-30
    • /
    • 1999
  • In the automobile development, press tool design and manufacturing are very difficult and need high cost experienced workers. Therefore, we concerned ourselves in the cost down and easy manufacturing. In this research, we have developed a tool for LH/RH of the front fender, which had difficulty in forming. We have carried out the drawing analysis by Pam-stamp and CATIA modeling. Finally, we get the optimal design parameter. As a result of try out, we found out the optimal width and margin at the center line for tool design. Also, in order to get good results we have to intaglio margin in the part of the wheel house and utilize double bead on every side except corner.

  • PDF

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (II) - Laser Weldability of Hot Stamping Steel with Ultra-High Strength - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (II) - 초고강도 핫스탬핑강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Park, In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1373-1377
    • /
    • 2014
  • Hot-stamping is a method of obtaining ultrahigh-strength steel by simultaneously forming and cooling boron steel in a press die after it has been heated at $900^{\circ}C$ or above. After heat treatment, boron steel has a strength of 1500 MPa or more. This material ensures a high level of quality because it overcomes the spring-back phenomenon, which is a problem associated with high-strength steel materials, and the degree of dimensional precision is improved by 90 or more because of the good formability compared with existing types of steel. In this study, the welding characteristics were identified through the butt and lap welding of hot-stamped steel using a disk laser. Full penetration was obtained at a faster speed with butt welding compared to lap welding, and a white band was observed in every specimen.

On the Deformation Analysis of the Brake Tube-End for Automobiles (자동차용 브레이크 튜브 관단부의 성형해석)

  • Han, K.T.;Park, J.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.31-35
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube end is performed by hydraulic press forming machine. In this paper, the forming processes of tube end for automobile is analyzed and designed to make the optimal form of brake tube end. Also, finite element analysis has been carried out using $DEFORM^{TM}% 3D to predict the optimal shape of brake tube end and the results obtained showed the optimal length between punch and chuck is $1.0{\sim}1.2mm$. The shape of tube end is in good agreement with the finite element simulations and the experimental results.

  • PDF

Forming Limit Curves of Uniaxially or Biaxially Prestrained Steel (이축 및 일축 예변형에 의한 박강판 성형한계곡선의 변화)

  • 남재복;한수식;박기철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.156-163
    • /
    • 1998
  • During an actual forming operation, a material may undergo considrably large changes in strain path, and these changes can significantly alter the forming limits. So, in this study, modified forming limit curves(FLCs) in complex strain path are determined with specially designed jig to give test specimens with desired prestrains in uniaxial or biaxial deformation mode. In another part of present study, theoretical prediction of FLCs is attempted with MK's theory and Hosford's yield criterion to give forming limit curves in positive minor strain region and with Hill's local necking theory in negative minor strain region. Comparison of these theoretical results with experimental ones will be mentioned for both linear and complex strain path.

Behavior Evaluation on the Non-symmetric Composite Column for Unit Modular Frames (모듈러 골조용 비대칭 기둥-보 접합부에 대한 거동 평가)

  • Park, Keum-Sung;Lee, Sang-Sup;Bae, Kyug-Woong;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • The purpose of this study is to evaluate the structural performance of press-formed type asymmetric column to beam connections of steel-PC composite module frames. Most of the column sections of the joints making up the modular frame use a closed square steel section. The column-beam connection using the closed column section has difficulty in reducing the workability and securing the fire resistance. In order to overcome this disadvantage, concrete is filled in the asymmetrical open type cross section of the steel plate by press forming. A total of four specimens were fabricated to investigate the structural performance of press formed type asymmetric column to beam connections. The experimental results show that the structural performance and behavior of the asymmetric columns are different depending on whether the asymmetric column cross section is composited or the column width thickness ratio. The structural performance of the press formed type asymmetric column to beam connection was evaluated by comparing the experimental results with the theoretical formulas.

Evaluation of Forming Limits of Automotive Muti-phase Steel Sheets (자동차용 다상복합조직강판의 성형한계 평가)

  • Lee, S.Y.;Jeong, J.Y.;Park, S.H.;Kim, S.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.195-198
    • /
    • 2009
  • In this study, in order to get the forming limit of AHSS sheet in the negative minor strain region, the shapes of die corner and drawbead are redesigned by employing the Taguchi's design of experiment method and the FEM forming simulation. With the redesigned FLD tool, the forming limit tests of automotive multi-phase(Dual Phase and Complex Phase) steel sheets which induce the normal fractures on the blank are performed.

  • PDF

Review of Formability and Forming Property for Stainless Steel (스테인레스 강판의 가공특성과 성형성에 관한 고찰)

  • Kim, Y.S.;Park, J.G.;Ahn, D.C.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.193-205
    • /
    • 2011
  • Because of its rustproof property, stainless steel is widely used in kitchen appliances, building materials, electronics, chemical plants and automobile exhausts. In addition, the utilization of stainless steel for fuel cell application is growing. As the demand for this material increases, it is necessary to study the basic properties of stainless steel such as corrosion resistance, heat transfer, formability, cutting or shearing ability and weldability. In this article, the mechanical properties, formability and press forming performance of stainless steel are reviewed. Since temperature and strain rate affect the press forming performance of STS304(austenitic) stainless steel, the influence of these parameters on the plastic behavior should be investigated. Moreover, measures for the prevention of ridging of STS430(ferritic) and delayed fracture of STS430, which respectively appear during and after press forming, should be considered. Recently, stainless steel sheets with a thickness lower than 0.2 mm have been widely used in applications for mobile phone, digital camera and fuel cell separator. Therefore, there is a growing interest of studying the grain size effect and plasticity at the crystal scale in order to understand the anisotropic behavior and micro forming ability of thin sheets. This review paper was written with the objective of helping engineers and researchers to understand the forming characteristics of stainless steel and to establish standards in plastic forming techniques.

A Study on the Composite Behavior of Simply Supported Composite Girders Considering the Partial Interaction (불완전 합성율을 고려한 단순합성형의 합성거동에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Park, Jae Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.543-555
    • /
    • 1997
  • Generally, in a steel-concrete composite gilder, the shear connector which was constructed between concrete deck and steel girder should have enough stiffness to behave as one body, because the conformity between plate and concrete deck is influences by the stiffness and spacing of the shear connectors. If the stiffness of shear connectors are insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, an easy method is presented to evaluate the stiffness or spacing of the shear connector according to the degree of imperfection without difficult calculations for a composite gilder with partial interaction. Also, the horizontal shearing force applied to the shear connector and the longitudinal axial force, which is occurs at contact surface between concrete deck and steel girder, have been presented in a simple influence line that is various to the parameters of sectional properties, degree of imperfection and applied load points. Furthermore, through the case study, it determined the relationships between the degree of imperfection and the follows 1) spring constants 2) axial force and horizontal shearing force 3) stress and neutral axis by using the partial differential equation based on Newmark's Partial Interaction Theory.

  • PDF