• Title/Summary/Keyword: 바퀴로봇

Search Result 200, Processing Time 0.022 seconds

Development of wall climbing robot using vacuum adsorption with legged type movement (진공 흡착과 보행형 이동에 의한 벽면이동 로봇의 개발)

  • Park, Soo-Hyun;Seo, Kyeong-Jun;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.344-349
    • /
    • 2017
  • Wall-climbing robots have been developed for various purposes, such as cleaning skyscraper windows, maintaining large structures, and welding vessels. Conventional wall-climbing robots use movement systems based on wheels or legs. However, wheeled robots suffer from slipping effects, while legged systems require many actuators and control systems for the complex linkage structure, which also increases the weight of the robot. To overcome these disadvantages, we propose a new wall-climbing robot that walks based on gorilla locomotion. The proposed robot consists of a DC drive motor, a vacuum pump for adsorption, and a micro controller for controlling the system. The performance of the robot was experimentally verified on vertical and horizontal flat surfaces. The robot could be used for various functions in industrial sites or disaster areas.

2-Input 2-Output ANFIS Controller for Trajectory Tracking of Mobile Robot (이동로봇의 경로추적을 위한 2-입력 2-출력 ANFIS제어기)

  • Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.586-592
    • /
    • 2012
  • One approach of the control of a nonlinear system that has gained some success employs a fuzzy structure in cooperation with a neural network(ANFIS). The traditional ANFIS can only model and control the process in single-dimensional output nature in spite of multi-dimensional input. The membership function parameters are tuned using a combination of least squares estimation and back-propagation algorithm. In the case of a mobile robot, we need to drive left and right wheel respectively. In this paper, we proposed the control system architecture for a mobile robotic system that employs the 2-input 2-output ANFIS controller for trajectory tracking. Simulation results and preliminary evaluation show that the proposed architecture is a feasible one for mobile robotic systems.

Simultaneous Mobile Robot Calibration using Iterative Linear Method (선형 반복법에 의한 이동로봇의 동시 보정)

  • Kim, Young-Yong;Jeong, Mun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.793-800
    • /
    • 2015
  • We presented a method to perform simultaneously both head-eye calibration and wheel calibration for a mobile robot that has a stereo camera mounted on the pan-tilt mechanism. Such a mobile robot system prevails recently. However, conventional methods are not applicable to this system because they assumed that camera systems were mounted on fixed structures. Building on conventional methods, we devised an iterative linear solution to solve the problem, and achieved satisfactory results in terms of accuracy in addition to efficiency due to simultaneous calibration. Furthermore, the calibration accuracy was improved by nonlinear optimization.

Design and Control of an Omni-directional Cleaning Robot Based on Landmarks (랜드마크 기반의 전방향 청소로봇 설계 및 제어)

  • Kim, Dong Won;Igor, Yugay;Kang, Eun Seok;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • This paper presents design and control of an 'Omni-directional Cleaning Robot (OdCR)' which employs omni-wheels at three edges of its triangular configuration. Those omni-wheels enable the OdCR to move in any directions so that lateral movement is possible. For OdCR to be localized, a StarGazer sensor is used to provide accurate position and heading angle based on landmarks on the ceiling. In addition to that, ultrasonic sensors are installed to detect obstacles around OdCR's way. Experimental studies are conducted to test the functionality of the system.

Pose Control of Mobile Inverted Pendulum using Gyro-Accelerometer (자이로-가속도센서를 이용한 모바일 역진자의 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.129-136
    • /
    • 2010
  • In this paper proposed the sensor fusion algorithm between a gyroscope and an accelerometer to maintain the inverted posture with two wheels which can make the robot body move to the desired destination. Mobile inverted robot fall down to the forward or reverse direction to converge to the stable point. Therefore, precise information of tilt angles and quick posture control by using the information are necessary to maintain the inverted posture, hence this paper proposed the sensor fusion algorithm between a gyroscope to obtain the angular velocity and a accelerometer to compensate for the gyroscope. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. However, a high-performing DSP and systems are needed for the algorithm. This paper realized the robot control method which is much simpler but able to get desired performance by using the sensor fusion algorithm and PID control.

Development of Detachable System of Permanent Magnet Wheel for Mobile Robot (이동로봇용 영구자석바퀴 착탈장치 개발)

  • 이화조;주해호;한승철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.635-638
    • /
    • 2000
  • It is necessary to work on a vertical plane of workpiece in order to produce a large structure like a ship. These works can be automated by using the robot with permanent magnet wheels. We developed the permanent magnet wheel which can be used by a mobile robot and easily detached. We enhanced an adhesive power by restricting the occurrence direction of magnetic flow. And we also developed a method which weakens adhesive magnetic force by changing magnetic flow with metal pins. We used the load cell and the gaussmeter to measure the characteristics of the adhesive force and magnetic force. We obtained the result that the adhesive power is reduced to 1/3 of normal state by using 4 inducing pins.

  • PDF

Kinematic Modeling of a Car-like Planar Mobile Robot with Four Fixed Wheels (네 개의 고정 바퀴가 장착된 자동차 구를 평면형 모바일 로봇의 기구학 모델링)

  • Lee, Seung-Eun;Kim, Hui-Guk;Lee, Byeong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.28-35
    • /
    • 2002
  • This paper deals with kinematic modeling of a car-like planar mobile robot consisting of four conventional fixed wheels attached on two parallel axles. The kinematic model of such a mobile robot requires the description of skidding and sliding frictional motion. Previous kinematic model proposed by Muir and Newman$^{[1]}$ does not include such frictional motions. Thus, does it result in least square solution in estimating a sensed forward velocity solution. A modified kinematic model is proposed by incorporating transnational friction motion into the original algorithm. It is shown that transnational friction motions should be included into kinematic model of the mobile robot to represent its real physical motion.

Implementation and Balancing Control of One-Wheel Robot, GYROBO (외바퀴 구동 GYROBO의 제작 및 밸런싱 제어 구현)

  • Kim, Pil-Kyo;Park, Junehyung;Ha, Min Soo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.501-507
    • /
    • 2013
  • This paper presents the development and balancing control of GYROBO, a one wheeled mobile robot system. GYROBO is a disc type one wheel mobile robot that has three actuators, a drive motor, a spin motor, and a tilt motor. The dynamics and kinematics of GYROBO are analyzed, and simulation studies conducted. A one-wheeled robot, GYROBO is built and its balancing control is performed. Experimental studies of GYROBO's balancing abilities are conducted to demonstrate the gyroscopic effects generated by the spin and tilt angles of a flywheel.

A Study on a Detachment of a Permanent Magnet Wheel for a Wall-Climbing Mobile Robot using Magnetic Inducement (자력선 유도를 이용한 벽면이동로봇용 영구자석바퀴의 탈착에 관한 연구)

  • Han, Seung-Chul;Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.143-149
    • /
    • 2002
  • Robot are necessary to automate the work on a vertical plane of work piece to produce a large structure like a ship, so that a permanent magnet wheel has been attempted to be used for a mobile robot. Its adhesive power was enhanced by restricting the occurrence direction of magnetic flow. Furthermore a method which weakened the adhesive force was developed for easy detachement of the wheel by changing magnetic flow with metal pin. To measure the characteristics of the adhesive and detaching farces, a load call and a gaussmeter were used. The result showed that the adhesive power was reduced to 1/3 of normal state by using 4 inducing pins.

Guideline for the Design of Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 설계지침)

  • 이화조;김은찬;한승철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.548-553
    • /
    • 2002
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

  • PDF