• Title/Summary/Keyword: 바이오스크러버

Search Result 7, Processing Time 0.023 seconds

Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons (유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발)

  • 장윤영;황경엽;곽재호;최대기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aiming at the treatment of large volumes of gas with a low concentration of poorly water soluble VOC(Volatile Organic Compound), a new system is proposed: the combination absorption tower/bioreactor. In the scrubber part of the bioscrubbing system, the contaminating compounds are absorbed in a aqueous phase. The contaminated scrubbing liquid is transported to the bioreactor, where the compounds are biodegraded by aerobic microorganisms (mainly to carbon dioxide, water, and biomass). In this study, separation of a volatile organic compound(VOC) out of a waste gas stream has been carried out using a re-cyclable high boiling point extrant(HBE). The liquid stream containing a high boiling point entrant(HBE) scrubs the gas stream in a direct gas-liquid countercurrent contacting operation in a packed tower for the removal of said component from the gaseous stream. A packed-bed column using Pall Ring was set up in order to simulate practical conditions for the scrubbing tower. The liquid stream transported to the bioreactor is recovered and recycled to the scrubber. The model gas, which contained 400 mg/$\textrm{m}^3$ of toluene, at a rate of 100 L/min, flowed into the packed column where the scrubbing liquid trickled over the packing in countercurrent to the rising gas at 10~15L/min. The bioscrubber designed for large volume air streams containing VOCs showed removal efficiency up to 80% in an optimum operating conditions during the tests fer removing toluene from an air stream by scrubbing the air stream with HBE.

  • PDF

Simultaneous Treatment of Tar and Particles Using Oil Scrubber and Bag Filter in Biomass Gasification (오일 스크러버 및 집진장치를 통한 바이오매스 가스화 공정 발생 타르 및 입자 제거 연구)

  • Kim, Joon Yub;Jo, Young Min;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.712-718
    • /
    • 2019
  • A combustible producer gas composed of H2, CO and CH4 could be obtained by the thermal-chemical conversion of biomass. However, a large amount of particulate matters including tar generated causes the mal-function of turbines and engines or the fouling of pipelines. In this study, a wet scrubber using the soybean oil and bag filter were installed, and the removal efficiency was investigated. Hydrate limestone and wood char base activated carbon were pre-coated on the filter medium to prevent clogging of open pores. The removal efficiencies by the bag filter were 86 and 80% for the hydrated limestone and activated carbon coating, respectively. Overall, the collection when using a series of oil scrubbers and bag filters were 88%, while 83% for the filter coating material.

Effect of equivalence ratio on operation of 3MWth circulating fluidized bed for biomass gasification (3MWth급 순환유동층 바이오매스 가스화기의 운전에서 Equivalence ratio 영향)

  • Park, Seongbum;Lee, Jeoungwoo;Song, Jaehun;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.58-65
    • /
    • 2017
  • Fluidized bed gasification is technically and economically proven technology, which shows the high possibility of realization and commercialization. However, in Korea, development of FBG to the commercial scale for power generation and industry is mainly blocked by the fact that there is no experience of design, troubleshooting and operation of even pilot scale fluidized bed gasifier. In this study, a $3MW_{th}$ circulating fluidized bed(CFB) was newly developed for biomass gasification. The fluidized bed was mainly composed of circulating and bubbling fluidized reactors integrating in-situ tar removal step in the system. For cleaning of the tar and acid gas in the product gas, the sequential gas cleaning process comprised of a ceramic filter, rapid quencher and wet scrubber was adopted. Effect of equivalence ratio was investigated to find the optimal operating conditions for the $3MW_{th}$ integrated system of fluidized bed gasification.

A Study on Cogeneration System Using 5ton/day Scale Downdraft Waste Wood Gasifier (5톤/일 하향류식 가스화기를 이용한 폐목재 가스화 열병합 발전기술 연구)

  • Yoon, SangJun;Kim, YongKu;Lee, JaeGoo;Kim, KiSe;Kang, ByungChan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.174.2-174.2
    • /
    • 2011
  • 최근 유가상승과 석유, 천연가스의 가채 매장량의 한계등과 함께 온실가스에 의한 지구온난화 방지를 위하여 미국, 유럽국가 및 캐나다 등에서는 바이오매스를 이용한 에너지 회수 기술개발에 많은 관심과 연구를 수행하고 있다. 바이오 매스는 에너지 밀도 대비 존재하는 지역이 광범위하여 발생, 수집, 수송에 따른 비용이 많이 소요되는 특성이 있어 산지에서 직접처리하거나 수집하여 대규모처리등과 같이 여러 가지 현장상황에 따라 적정한 플랜트 운용의 유연성을 갖추고 있어야 한다. 일반적으로 바이오매스로부터 중소형으로 분산형 발전이나 수소제조를 위해서는 직접 연소법 보다는 가스화 방식을 이용하고 있는데, 연소에 의해 열을 생산하여 전기를 생산하는 방식은 스팀터빈을 이용하는 것이며, 스팀터빈은 소형 운용이 어렵기 때문이다. 본 연구에서는 폐목재로부터 합성가스제조를 위하여 5톤/일 규모 가스화기를 제작하였으며, 타르 및 수트와 같은 미반응 물질을 제거할 수 있는 집진, 세정장치를 설계 및 제작하였다. 또한 합성가스에 함유된 현열로부터 열회수를 위하여 열교환기를 설치하였으며, 정제된 합성가스를 이용하는 가스엔진을 통하여 열병합 발전시스템 연계운전을 수행하였다. 운전 실험을 폐목재 가스화 3톤/일 규모로 수행하였으며, 평균 1,500kcal/$Nm^3$의 발열량을 갖는 합성가스를 생성시킬 수 있었다. 사이클론, 스크러버 및 기수분리 장치를 이용하여 정제된 합성가스는 합성가스 엔진을 통하여 72kW 이상의 전력생산이 가능하였다. 열교환기를 통하여 평균 15,000kcal/h의 배열 회수가 가능하였으며, 바이오매스 가스화 합성가스를 이용한 열병합 발전이 가능함을 입증하였다.

  • PDF

Evaluation of Livestock Odor Reduction Efficiency for Odor Reduction Systems in Domestic Pig Farms (돈사용 스크러버 및 바이오커튼의 축산악취 저감효과 분석)

  • Lee, Minhyung;Yeo, Uk-hyeon;Lee, In-Bok;Jeong, Duek-young;Lee, Sang-yeon;Kim, Jun-gyu;Decano-Valentin, Cristina;Choi, Young-bae;Kang, Sol-moe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.77-86
    • /
    • 2022
  • Various odor reduction systems are being operated at pig houses to improve livestock odor issues. However, the quantitative evaluation of odor reduction efficiency is not sufficiently conducted. The analysis of factors that affect the reduction efficiency also has not been sufficiently conducted. Therefore, in this study, the reduction efficiency of representative odor reduction facilities (bio-curtain, scrubber) operated by domestic pig houses was evaluated. The odor reduction efficiency was evaluated by sampling the air before and after the odor reduction facility in 6 pig houses. Livestock odors were evaluated for complex odors, ammonia, hydrogen sulfide, and VOC. To find factors for reduction efficiency, temperature, humidity, pH of washing resolution, type of washing water, and ventilation rate was measured. As a result, it was found that the scrubber system had the highest reduction efficiency. The reduction efficiency was found to be affected by the scrubber's washing resolution, filler, operating conditions, and size. Bio-curtains may have problems such as deterioration of fan performance due to ventilation fan load, groundwater pollution, and excessive use of groundwater.

Optimizated pH and Mitigated Ammonia Emission in Pig Manure Slurry by Soluble Carbohydrate Supplementation (수용성 탄수화물을 이용한 분뇨슬러리 pH 적정화 및 암모니아 휘산의 저감)

  • Lim, Joung-Soo;Hwang, Ok-Hwa;Lee, Sang Ryong;Cho, Sung-Back;Kwag, Jung-Hoon;Lee, Dong-Hyun;Jung, Min Woong;Han, Deug-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.103-110
    • /
    • 2017
  • In Concentrated Animal Feeding Operations(CAFOs), emission of ammonia from stored manure contributes negatively on the wellness of livestock. In CAFOs facilities, indoor aerial ammonia concentration oftentime surpasses the critical level potentially harmful to livestock's immune system. Understandably, numerous researches to control aerial ammonia have been conducted in countries where CAFOs were practiced for many decades. Some innovative technologies, such as scrubber, bio-filter, and additives emerged, as a result. Among them, microbial additives became popular in Korea, due to an easiness of use and affordability. However, microbial additives still have some weaknesses. Their price is still high enough to discourage farmers who run a small scale farm and their effectiveness are still questioned by many users and researchers. In the present study, we found soluble carbohydrates, such as sugar, glucose, and molasses, when supplemented to pig slurry manure, can mitigate ammonia emission. To be more specific, pig manure slurry(120kg), stored in container(200L), was supplemented with sugar at 0.1%(w/w) and was, subsequently, monitored for pH and aerial ammonia for next 10 days. From this experiment, it was found that the sugar supplementation was effective in mitigating the aerial ammonia concentration (33% in average) when monitored daily. Also, the pH of manure slurry was maintained at relatively low level(8.2) in sugar-supplemented manure slurry while it was elevated to 8.5 in untreated slurry. Conclusively, the obtained data suggest that soluble carbohydrate can mitigate ammonia emission by acidifying manure slurry. Additionally, it can be suggested that soluble carbohydrates, such as sugar, glucose, and molasses, can be reasonable choices for animal farmers who have been looking for an alternative choice to replace expensive microbial additives.