• Title/Summary/Keyword: 바이오매스 확장계수

Search Result 18, Processing Time 0.024 seconds

Aboveground Biomass Estimation of Pinus rigida Stands in Muju Region (무주지역 리기다소나무 임분의 지상부 바이오매스 추정)

  • Seo, Yeon-Ok;Lee, Young-Jin
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • The objective of this study was to develop allometric equations and stem density and biomass expansion factor for Pinus rigida stands in Muju region. The coefficient of determination of the allometric equations in independent variable (dbh) and dependent variable (biomass) was more than 95% with the exception of leaf (78%) and branch(83%). The total biomass was $102Mg\;ha^{-1}$ ($65.9 Mg\;ha^{-1}$ from stem wood, $9.5Mg\;ha^{-1}$ from stem bark, $19.6Mg\;ha^{-1}$ from branch and $7.0Mg\;ha^{-1}$ from leaf). Biomass distribution ratio of Pinus rigida stands showed the highest in stem wood with 64.6%, followed by the branch with 19.2%, stem bark with 9.3% and the leaf with 6.9%. The results indicated that the stem density $(g/cm^{3})$ and the biomass expansion factor were 0.453 and 1.344, respectively.

Uncertainty Analysis of Stem Density and Biomass Expansion Factor for Pinus rigida in Korea (리기다소나무림의 줄기밀도와 바이오매스 확장계수에 대한 불확실성 평가)

  • Seo, Yeon Ok;Lee, Young Jin;Pyo, Jung Kee;Kim, Rae Hyun;Son, Yeong Mo;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.149-153
    • /
    • 2011
  • This study was conducted to examine the uncertainty analysis of the stem density and biomass expansion factor for Pinus rigida in Korea. A total of 57 representative sample trees were harvested. The age class in Pinus rigida forests was divided into two, which were stands with less than 20 years and more than 21 years. The influence of stand ages on biomass expansion factor showed that it was statistically significant (p=0.0001), but it was not significant on stem density (p=0.8070). The results of this study based on the uncertainty evaluation method which were suggested by IPCC guide line indicated that stem density of the stand with less than 20 years were 30.92%, while were 25.12% the stands with more than 21years. The uncertainty in biomass expansion factor of less than 20 years and more than 21 years were 60.32% and 22.42%, respectively. The uncertainty of less than 20 years was higher compared to those stands with more than 21 years. In the case of old stand, it showed the lowest uncertainty results but younger stands showed the highest uncertainty results. This study could be applied to our country's emission factor by using stem density and biomass expansion factors which were less than 20 years and more than 21 years for Pinus rigida in Korea.

Bootstrap Evaluation of Stem Density and Biomass Expansion Factors in Pinus rigida Stands in Korea (부트스트랩 시뮬레이션을 이용한 리기다소나무림의 줄기밀도와 바이오매스 확장계수 평가)

  • Seo, Yeon Ok;Lee, Young Jin;Pyo, Jung Kee;Kim, Rae Hyun;Son, Yeong Son;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.535-539
    • /
    • 2011
  • This study was conducted to examine the bootstrap evaluation of the stem density and biomass expansion factor for Pinus rigida plantations in Korea. The stem density ($g/cm^3$) in less than 20 tree years were 0.460 while more than 21 tree years were 0.456 respectively. Biomass expansion factor of less than 20 years and more than 21 years were 2.013, 1.171, respectively. The results of 100 and 500 bootstrap iterations, stem density ($g/cm^3$) in less than 20 years were 0.456~0.462 while more than 21 years were 0.457~0.456 respectively. Biomass expansion factor of less than 20 years and more than 21 years were 1.990~2.039, 1.173~1.170, respectively. The mean differences between observed biomass factor and average parameter estimates showed within 5 percent differences. The split datasets of younger stands and old stands were compared to the results of bootstrap simulations. The stem density in less than 20 years of mean difference were 0.441~1.049% while more than 21years were 0.123~0.206% respectively. Biomass expansion factor in less than 20 years and more than 21 years were -1.102~1.340%, -0.024~0.215% respectively. Younger stand had relatively higher errors compared to the old stand. The results of stem density and biomass expansion factor using the bootstrap simulation method indicated approximately 1.1% and 1.4%, respectively.

Estimation of Biomass for 27 Years Old Korean Pine (Pinus koraiensis) Plantation in Gangneung, Gangwon-Province (강릉지방 27년생 잣나무조림지의 바이오매스에 관한 연구)

  • Lee, Young-Jin;Seo, Yeon-Ok;Park, Sang-Moon;Pyo, Jung-Kee;Kim, Rae-Hyun;Son, Yeong-Mo;Lee, Kyeong-Hak;Kim, Hyung-Ho
    • Journal of agriculture & life science
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was conducted to examine the biomass, allometric equations, net primary production, above and total biomass expansion factors and stem density values for 27 years old Korean pine(Pinus koraiensis Siebold et Zuccarini) plantation at the Gangneung National Forest. After considering of the diameter distributions in the $20m{\times}20m$ plot measurement, a total of 5 representative sample trees were destructively sampled to measure green weights and dry weights of the four(root, stem, branch and foliage) protions of Korean pine trees. According to the results of this study, total dry weights were 117.6 kg/tree and 59.9 ton/ha. Aboveground biomass and total (above and belowground) biomass for this species were 59.9 and 82.4 ton/ha, respectively. Ratios of root to aboveground biomass were 0.38. Net primary production of aboveground biomass and belowground biomass were 9.4 and 11.3 ton/ha, respectively. Stem density was $0.49g/cm^{3}$. Above and total biomass expansion factors were 1.78 and 2.19, repectively. This information could be very useful to calculate carbon sequestrations by applying stem desity values and biomass expansion factors for Korean pine species.

A Study on Estimation of Biomass, Stem Density and Biomass Expansion Factor for Stand Age Classes of Japanese Larch (Larix leptolepis) Stands in Gapyeong Area (가평지역 낙엽송림의 바이오매스와 영급별 줄기 밀도 및 바이오매스 확장계수 추정 연구)

  • Noh, Nam-Jin;Son, Yo-Whan;Kim, Jong-Sung;Kim, Rae-Hyun;Seo, Keum-Young;Seo, Kyung-Won;Koo, Jin-Woo;Kyung, Ji-Hyun;Park, In-Hyeop;Lee, Young-Jin;Son, Yeong-Mo;Lee, Kyeong-Hak
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • This study was conducted to develope allometric equations and to estimate biomass, stem density, and biomass expansion factor for the three stand age classes (I-II, III-IV, and V-VI) of Japanese larch (Larix leptolepis) in Gapyeong area. Total dry weight (kg/tree) and aboveground biomass (ton/ha) were 57.8 and 71.1 for I-II class, 185.4 and 195.6 for III-IV class, and 1047.9 and 180.6 for V-VI class, respectively. Total above and belowground biomass (ton/ha) was 96.3 for I-II class, 265.7 for III-IV class, and 244.5 for V-VI class. The proportion (%) of stem to total biomass increased with stand age class and was 53.9 for I-II class, 55.7 for III-IV class, and 57.7 for V-VI class, respectively, while that of foliage decreased and was 7.1 for I-II class, 4.5 for III-IV class, 2.3 for V-VI class. Ratios of root to aboveground biomass were 0.35 for all age classes. Stem density ($g/cm^3$) differed between I-II class and III-VI class. Aboveground and total biomass expansion factors were 1.31-1.44 and 1.26-1.94. Our results showed that differences in stand density with stand age classes might influence allometric equation, stem density and ratios of aboveground biomass to stem biomass and total biomass to stem biomass (biomass expansion factors).

  • PDF

Allometric Equations and Biomass Expansion of Yellow Poplar(Liriodendron tulipifera) in Southern Korea (백합나무의 상대생장식 및 현존량 확장계수)

  • Kang, Min Sun;Jang, Kyoung Soo;Son, Young Mo;Kim, Rae Hyun;Park, In Hyeop;Lee, Kye Han
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.463-471
    • /
    • 2016
  • The purpose of this study was to develop allometric equations for identifying the amount of wood and building biomass statistics of L. tulipifera by density, biomass expansion factors and root ratio. For this purpose, total of 40 trees were sampled, which were used consideration the area and the DBH class. As a results, the wood density was $0.43g{\cdot}cm^{-3}$, biomass expansion factors were 1.2, root ratio was 0.2 and uncertainty were 3.9%, 4.6%, 24.1%, respectively. Allometric equations for above ground of L. tulipifera trees were $W=0.060D^{2.524}$. Total and underground allometric equations were $W=0.063D^{2.578}$, $W=0.010D^{2.591}$, respectively.

Above-and Belowground Biomass and Net Primary Production for Pinus densiflora Stands of Cheongyang and Boryeong Regions in Chungnam (충남 청양, 보령지역 소나무림의 지상부와 지하부 바이오매스 및 순생산량에 관한 연구)

  • Seo, Yeon-Ok;Lee, Young-Jin;Pyo, Jung-Kee;Kim, Rae-Hyun;Son, Yeong-Mo;Lee, Kyeong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • This study analyzed the above-and belowground biomass, net primary production, stem density, and biomass expansion factors for Pinus densiflora stands of Cheongyang and Boryeong regions in Chungnam. The total dry weights in Cheongyang and Boryeong regions were 122.36 kg/tree and 137.68 kg/tree while the aboveground biomass for these two regions were 72.23 Mg/ha and 143.27 Mg/ha, respectively. Total(above-and belowground) biomass were 91.77 Mg/ha and 178.98 Mg/ha, respectively. Net primary production of above-and belowground biomass in Cheongyang and Boryeong regions were 8.69 Mg/ha, 10.03 Mg/ha, 16.00 Mg/ha and 18.66 Mg/ha, respectively. Stem density (g/$cm^3$) was 0.457 and 0.421 while the above and total biomass expansion factors were 1.394~1.662 and 1.324~1.639, respectively. These results suggested that stand density and site quality could be influenced on the biomass and net primary production of the two regions. In addition, the results of this study could be very useful to calculate carbon sequestrations by applying stem density values and biomass expansion factors for Pinus densiflora in these two regions.

Biomass and Net Primary Production of Pinus densiflora Stands in Gochang regions (고창지역 소나무림의 바이오매스 및 순생산량에 관한 연구)

  • Seo, Yeon-Ok;Lee, Young-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.45-53
    • /
    • 2010
  • This study was conducted to examine the biomass and net primary production, stem density and biomass expansion factors of Pinus densiflora in Gochang regions. The mean age of Pinus densiflora in both stands was 10 and 48 years. The dry weights (kg/tree) and aboveground biomass (Mg/ha) were 8.59 and 17.55 for 10 years young stand, 166.66 and 122.05 for 48 years old stand. The total biomass (Mg/ha) including the above and belowground were 21.48 and 154.16 in both age stands. The proportion of stem biomass, stem bark biomass and root biomass increased from the young stand to the old stand while on the leaf biomass and branch biomass, tend to decreased. The net primary production of aboveground biomass (Mg/ha) and belowground biomass were 6.30~6.95 for the young stand and 11.61~13.19 for old stand. The stem density ($g/cm^3$) was 0.338 for young stand while on the other hand, 0.448 for old stand was observed. The above and total biomass expansion factors were 2.304~2.508 and 1.318~1.644 in each age stands, respectively.

Allometric Equations and Biomass Expansion Factors in an Age-sequence of Black Pine (Pinus thunbergii) Stands (곰솔임분의 임분연령별 상대생장식 및 현존량 확장계수)

  • Kim, Choonsig;Lee, Kwang-Soo;Son, Young-Mo;Cho, Hyun-Seo
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.543-549
    • /
    • 2013
  • This study was conducted to evaluate age-specific and generalized allometric equations and biomass expansion factors (BEFs) for each tree component across three age-sequence stands (35-year-old, 51-year-old, 62-year-old) of black pine (Pinus thunbergii Parl.) in Jinju, located in the western part of Gyeongnam province, Korea. Biomass in each tree component, i.e. foliage, branch, and stem, was quantified by destructive tree harvesting. Allometric regression equations were significant (P<0.05) with diameter at breast height (DBH) or combination of DBH and height ($DBH^2H$) accounting for 55-98% of the variation (as indicated by coefficients of determination, $R^2$) in aboveground biomass except for foliage biomass of the 62-year-old stand. Generalized allometric equations can be used to estimate the biomass of black pine stands because the slopes of age-specific equations over 35-year-old stands were not significantly different by the age-sequence. The stem density and biomass expansion factor (BEFs) were not significantly different (P>0.05) from different stand ages and ranged from 0.45 to $0.51gcm^{-3}$, and from 1.32 to 1.38, respectively. The results indicate that allometric equations, stem density and aboveground BEFs in the matured black pine over 35-year-old are little influenced by different stand ages.

Development of Carbon Emission Factors and Biomass Allometric Equations for Metasequoia glyptostroboides and Platanus occidentalis in Urban Forests (정주지의 메타세쿼이아와 양버즘나무의 탄소 배출 계수 및 바이오매스 상대생장식 개발)

  • Jun-Young Jung;Subin Im;Hyun-Jun Kim;Kye-Han Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • This study aimed to develop biomass allometric equations and estimate carbon emission factors, such as the wood density, biomass-expansion factor, and root-to-shoot ratio, for Platanus occidentalis and Metasequoia glyptostroboides planted in urban areas. Twenty M. glyptostroboides and 25 P. occidentalis trees were harvested, and the dry weights and stem volumes of stems, branches, leaves, and roots (>5 mm) were measured. The wood densities of M. glyptostroboides and P. occidentalis were 0.293 ± 0.008 g cm-3 and 0.509 ± 0.018 g cm-3, and the biomass-expansion factors were 1.738 ± 0.031 and 1.561 ± 0.035. The root-to-shoot ratios were 0.446 ± 0.009 and 0.402 ± 0.012. The uncertainty tests (coefficient of variation, %) gave 2.8% and 3.5% values for wood density, 1.8% and 2.3% for biomass-expansion factor, and 2.1% and 2.9% for root-to-shoot ratio, respectively. Among the developed allometric equations, Model I using the diameter at breast height (DBH) was suitable. The allometric equations of M. glyptostroboides and P. occidentalis above ground were y = 1.679 (DBH)1.315 and y = 0.505 (DBH)1.896, and the allometric equations of the root and total were y = 0.746 (DBH)1.315, y = 0.301 (DBH)1.751, y = 2.422 (DBH)1.316, and y = 0.787 (DBH)1.858. If the carbon-emission factors of this study and biomass allometric equations of the three developed models are used to estimate the carbon storage and biomass of urban forests, errors caused by not considering the use of fixed factors and the environmental differences can be reduced.