• Title/Summary/Keyword: 바이오디젤연료

Search Result 235, Processing Time 0.027 seconds

Effect of Diesel Injection Characteristics on Biogas-Diesel Dual Fuel Engine Performance (디젤 분사 특성이 Biogas-디젤 혼소엔진 성능에 미치는 영향)

  • Lee, Sun-Youp;Kim, Young-Min;Lee, Jang-Hee
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.195-201
    • /
    • 2010
  • Due to its carbon-neutral nature, biogas generated from anaerobic digestion or fermentation of biodegradable wastes is one of the important renewable energy sources to reduce global warming. It is mainly composed of methane and various inert gases such as $CO_2$ and $N_2$, and the actual composition of biogas significantly varies depending on the origin of anaerobic digestion process. Therefore, in order to effectively utilize this fuel as an energy source for electricity, it is important to develop power generation engines which can successfully apply biogas with significant composition variations. In this study, efforts have been made to develop a diesel-biogas duel fuel engine as a way to achieve such a stable power generation. The effects of diesel fuel injection quantity and pressure on stable combustion and engine performance were investigated, and an impact of diesel fuel atomization was discussed. The engine test results show that there exists a 2 stage combustion which consists of diesel pilot fuel burning and premixed biogas/air mixture burning in dual fuel engine operation and optimum diesel injection parameters were suggested for biogases with various compositions and heating values.

A Study on Combustion Process of Biodiesel Fuel with Pilot Injection in a Common-rail Diesel Engine (파일럿분사에 의한 바이오디젤유의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.146-153
    • /
    • 2011
  • American NREL (National Renewable Energy Laboratory) reported that BDF20 could reduce PM, CO, SOx, and cancerogenic matters by 13.6%, 9.3%, 17.6%, and 13% respectively, compared to diesel fuel. BDF20 has been being tested on garbage trucks and official vehicles at Seoul City, which is positive on air environment, but negative on combustion by higher viscosity in winter season. This study investigated the combustion characteristics by applying pilot injection for improving the deterioration of combustibility caused by the higher viscosity of the BDF20 with the combustion flames taken by a high-speed camera and the cylinder pressure diagram. A 4-cycle single-cylinder diesel engine was remodeled to a visible 2-cycle engine taking the flame photographs, which has a common-rail injection system. The test was done laboratory temperature at $5{\sim}6^{\circ}C$. The results obtained are summarized as follows, (1) In the case of without pilot injection, the flame propagation speed was slowed and the maximum combustion pressure became lower. The phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of with pilot injection, early stage of combustion such as rapid ignition timing and flame propagation was activated since intermediate products formed by pilot injection act as a catalyst for combustion of main fuel.

Recent Research Trend in the Catalytic Pyrolysis of Waste Plastics for the Production of Renewable Fuels and Chemicals (폐플라스틱 촉매 열분해를 통한 재생 연료 및 화학제품 생산 기술 연구동향)

  • Kim, Young Min;Lim, Se Jeong;Kim, Jichan;Jae, Jungho
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.10-21
    • /
    • 2021
  • 최근 폐플라스틱의 사용량 증가와 미세플라스틱으로 인한 해양 오염 및 생태계 축적 등의 부정적인 영향으로 인해 플라스틱 업사이클링(upcycling) 및 리파이너리(refinery) 기술에 대한 관심이 증가하고 있다. 화학적 재활용 방법 중의 하나로, 폐플라스틱의 열분해를 통해서 재생 연료 및 화학물질을 생산하는 연구는 90년도에 활발히 진행된 바 있고, 최근의 환경오염에 대한 대응으로서 다시 많은 관심을 받고 있다. 폐플라스틱을 효율적으로 분해하기 위해서는 촉매를 사용하여 분해 속도를 제어해 주어야 하며, 사용된 촉매의 특성에 따라 최종 생성물의 성상이 크게 달라진다. 본 기고문에서는 폐플라스틱의 촉매 열분해를 통해 가솔린, 디젤유 및 항공유와 같은 수송용 연료, 발전용 연료 혹은 방향족 화학 물질을 생산하는 기술들의 최신 연구 동향을 다루고 향후 전망에 대해 기술하고자 한다. 아울러 최근 몇 년간 많은 연구가 있었던 바이오매스와 폐플라스틱의 혼합열분해를 통한 하이브리드 촉매 공동 열분해 기술에 대해서도 다루고자 한다.

A Study on the Quality Characteristics of Feedstocks for Power Bio-Fuel Oil (발전용 바이오중유용 원료물질의 품질특성 연구)

  • Jang, Eun-Jung;Lee, Mi-Eun;Park, Jo-Yong;Min, Kyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.136-147
    • /
    • 2015
  • As it carry out RPS(Renewable Portfolio Standards), power producers are using the power bio-fuel oil to meet their RPS quota. In this study, we test the quality characteristics of raw materials for power bio-fuel oil and the property changes of power bio-fuel oil by the kind of feedstocks. The power bio-fuel oil and feedstocks were analyzed for item of quality standard such as acid number, viscosity and metal contents. And it was analyzed for composition distribution by FT-IT and HPLC. Such as low priced palm oil series has high acid number and ash contents due to high free-fatty acid and metal contents. And by-product of biodiesel have a tendency of high viscosity. The fuel properties of power bio-fuel oil, such as viscosity, acid number and metal contents are correlated with the constituent and the mixing ratio of the feedstocks.

The Characteristics of Biodiesel Fuel as an Alternative Fuel of an Agricultural Diesel Engine (농업용 디젤기관의 대체연료로서 바이오디젤유의 특성)

  • Choi S. H.;Oh Y.T.;Lee C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.115-120
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from diesel engines in these days. In particular, the exhaust emissions of agricultural diesel engines are recognized main cause which influenced environment strongly. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated agricultural D.I. diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in comparison with diesel fuel, that is, it was reduced approximately 50% at 2500 rpm, full load. But, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel. Also, the effects of exhaust gas recirculation (EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel (20vol-%) and cooled EGR method($5{\sim}15%$) in an agricultural D.I. diesel engine.

The Characteristics on the Engine Performance for Variation of Fuel Injection Timing in DI Diesel Engine Using Biodiesel(II) (바이오디젤 사용과 연료분사시기 변화에 따른 DI 디젤기관 성능 특성(II))

  • Jang, Se-Ho
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.25-32
    • /
    • 2013
  • Biodiesel is technically competitive with it and offers technical advantages over conventional petroleum diesel fuel. Biodiesel is an environment friendly alternative liquid fuel that can be used in any diesel engine without modification. In this study, (dP/dCA)max and heat release, emission characteristics with different fuel injection timings are compared between diesel fuel and biodiesel in the D.I. diesel engine with T/C. The engine was operated at five different fuel injection timings from BTDC 6deg to 14deg at 2deg intervals and with four different loads at engine speed of 1800rpm. The experiments in a test engine showed that ranges between low and high of (dP/dCA)max got narrower, as the engine load increased, BD blend rate increased, and fuel injection timing was delayed. Cumulative heat release increased with the advanced fuel injection timing. NOX emissions decreased with the delays of fuel injection timing.

A Study on Injector Durability Test with Diesel and BD20 Using Common Rail (커먼레일을 이용한 디젤과 BD20 연료가 인젝터에 미치는 영향에 관한 연구)

  • JEONG, YUNHO;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.393-401
    • /
    • 2015
  • The characteristics of diesel and biodiesel are similar like as cetane number and auto-ignition temperature. High cetane number of diesel and BD could make possible to compression ignition. but BD showed different atomization from diesel due to component like density, viscosity and iodine value etc. Because of this, the biodiesel requires validation. This study using diesel and BD20 investigated effect to durability injector. Durability test were used common rail and bosch solenoid type 5-hole injector. Total test was 672hr but actual running time was 200hr. Spray experiments for spray characteristics were carried out using constant volume combustion chamber. Spray characteristics of diesel and BD showed different result up to durability test time. After 100hr, diesel showed spray shapes were stable but BD was not. After 200hr, difference of diesel and BD spray shapes were grow serious.

Biomethanol Conversion from Biogas Produced by Anaerobic Digestion (혐기소화에 의한 Biogas 생산과 Biomethanol 전환에 관한 고찰)

  • Nam, Jae Jak;Shin, Joung Du;Hong, Seung Gil;Hahm, Hyun Sik;Park, Woo Kyun;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.93-103
    • /
    • 2006
  • Biogas is a byproduct after anaerobic digestion of organic materials and has been used as an energy source for heating and generating electricity. Demands of methanol for fuel mixed with gasoline and reactant in biodiesel production are steadily being increased. In this review, we summarized recent advancements in direct partial oxidation of methane to methanol with the brief history of methanol synthesis. The steam reforming and the catalytic oxidation of methane to methanol were compared, the former of which are mainly used in industrial scale and the latter in a stage of research and development. On the basis of this review, the possibility of methanol conversion from biogas was proposed in the aspects of the technological feasibility and the economical practicability.

  • PDF

Production of Bio-Diesel Fuel by Transesterification of Used Frying Oil (폐식용유의 에스테르화 반응에 의한 바이오디젤유 제조)

  • 박영철;최주홍김성배강동원
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 1996
  • Transesterification of used frying oil was investigated to produce the bio-diesel oil. Experimental conditions included molar ratio of used frying oil to alcohol (1:3, 1:5 and 1:7), concentration of catalyst (0.5, 1.0 and 1.5 wt.%), ippe of catalyst(sodium melhoxide, NaOH and KOH), reaction temperature (30, 45 and $60^{\circ}C$), and types of alcohol(methanol, ethanol and butanol). The conversion of used frying oil increased with the alcohol mixing ratio and with the reaction temperature. The effect of the type of catalysts on conversion was not significant. The highest conversion was obtained when methanol was used as alcohol. Viscosity was a little higher with the ester product over grade #2 diesel oil. But the physical properties improved significantly with transesterification, resulting in similar fuel properties with those obtained for grade #2 diesel fuel.

  • PDF

The effects of Gasoline-Biodiesel Blended Fuels on Spray Characteristics (스프레이 특성에 가솔린 - 바이오 디젤 혼합 연료의 효과)

  • THONGCHAI, SAKDA;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.287-293
    • /
    • 2015
  • The current study has investigated the effects of biodiesel blended with gasoline on the spray characteristics in a Constant Volume Combustion Chamber (CVCC). With the concentration of 5, 10, 15 and 20% by volume, biodiesel was blended with commercial gasoline and performed on the macroscopic visualization test. Pure gasoline and biodiesel were also tested as the reference. The shadowgraph technique was conducted in the constant volume chamber. The spray images were recorded by a high speed video camera with frame speed 10,000 frame per second. Fuel injection was set at 800, 1000 and 1,350 bar with the simulated speed 1,500 and 2,000 rpm. The back pressure was controlled at 20 bar. The spray angle and penetration tip were measured and analyzed by using the image processing. At the high injection pressure, the spray penetration length with the simulated speed 1,500 rpm showed that B100 was lower than GB00-20 whereas the spray penetration length with the simulated speed 2,000 rpm exhibited that GB blends and B100 were insignificantly different. Due to biodiesel concentration, its effects on spray angles were observed throughout injection periods (T1, T2 and T3). At the simulated speed 1,500 rpm, the spray angle of GB blends and B100 presented the same pattern following injection timing. In addition, when the simulated speed increased to 2,000 rpm the different spray angle of all blends disappeared at main injection (T3).