• Title/Summary/Keyword: 바이오디젤연료

Search Result 235, Processing Time 0.026 seconds

The Spray and Combustion Characteristics by the Ratio of Cetane Number Enhancing Additives in Diesel (세탄가 향상 혼합 연료에 따른 디젤 연료의 분무 및 연소특성에 관한 연구)

  • Kim, J.H.;Lee, S.W.;Lee, H.S.;Choi, J.H.;Lee, Y.C.;Cho, Y.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying different composition rates of octane number in diesel fuel to a common-rail system. For the visualization, the experiment was carried out under different injection pressures and different cetane number. The test was done by three different types of diesel fuels, the different composition rates of cetane number in diesel fuel and HBD. In summary, this research aims to investigate the combustion characteristics in the application of fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide with fundamentals of the development of diesel engines in future.

  • PDF

Process Design and Simulation of Fast Pyrolysis of Brown Seaweed (갈조류 급속열분해 공정의 모사와 설계)

  • Brigljevic, Boris;Woo, Hee Chul;Liu, Jay
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.435-440
    • /
    • 2017
  • Fast pyrolysis of third generation biomass, including micro- and macroalgae for biofuel production has recently been studied and compared experimentally to first- and second-generation biomass. Compared to microalgae, however, process design and simulation study of macroalgae for scale-up has been rare in literature. In this study, we designed and simulated an industrial scale process for producing diesel range biofuel from brown algae based on bench scale experimental data of fast pyrolysis using a commercial process simulator. During process design, special attention was paid to the process design to accommodate the differences in composition of brown algae compared to terrestrial biomass. The entire process of converting 380,000 tonnes of dry brown algae per year into diesel range biofuel was economically evaluated and the minimum (diesel) selling price was also estimated through techno-economic analysis.

A Study on the Flammability and Combustion Risk of Biodiesel Mixture (바이오디젤 혼합물의 인화 및 연소 위험성에 관한 연구)

  • Kim, Ju Suk;Ko, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Purpose: The purpose of this study is to determine the dangers of biodiesel and general diesel mixtures currently used as alternative fuels by equipment (tag method and penski Marten method) and to determine the difference between flash point and combustion point (closed, open) according to test methods. It is intended to be used as a reference material for identification and evaluation of firecausing substances by confirming the risk of mixtures by comparative analysis and measurement, and establishing a risk assessment method for chemical substances. Method: Flash point test method and result treatment were tested based on ASTM and KS M mode, which are tag sealing and pen schematense test methods used as flash point and combustion point test methods for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was a test equipment that satisfies the test standards of KS M 2010 with equipment produced by TANAKA of Japan. The flash point and combustion point were measured, and the flash point according to the test method of biodiesel and general diesel mixture ( Closed, open), and the ignition point of a mixture of biodiesel and general diesel was compared and analyzed for ignition risk compared with conventional diesel. Results: Looking at the experimental results, first, as an analysis of the risk of flammability of the mixture, the flash point of a substance containing 70% biodiesel was found to be about 92℃ based on general diesel with a flash point of 64.5℃, and gasoline and biodiesel or When the biodiesel mixture was synthesized, it was confirmed that the flash point tends to decrease. In addition, the difference between the flash point and the combustion point was analyzed as about 20 ~ 30℃, and when a small amount of gasoline or methanol was mixed, the flash point was lowered, but it was confirmed that the combustion point was similar to that of the existing mixture. Conclusion: In this study, in order to secure the effectiveness of the details of the criteria for judging dangerous materials in the existing Dangerous Materials Safety Management Act, and to secure the reliability and reproducibility of the judgment of dangerous materials, we confirm the criteria for judging the risk of the mixture through an experimental study on flammable mixtures. It will be able to provide reference data for experimental criteria for flammable liquids that are regulated in the field. In addition, if this study accumulates know-how on experiment by test method, it is expected that it can be used as a basis for research on risk assessment and research on dangerous goods.

Determination of the Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel by Additives (첨가제에 따른 경유연료의 세탄가 유도세탄가 및 세탄지수 분석)

  • Lim, Young-Kwan;Kim, Jong-Ryeol;Jung, Choong-Sup;Yim, Eui Soon;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.375-381
    • /
    • 2010
  • Cetane number of diesel fuel for compression ignition engine is one of main properties for fuel ignition quality. Recently the cetane index has been replaced the cetane number in order to resolve the disadvantage of CFR engine test, but these two value have slightly difference values due to addition of various additives. In this study, we analyzed the cetane number, derived cetane number and cetane index for diesel fuel which was blended with various ratios of biodiesel, kerosene and cetane improver as additives. As a result, Cetane number showed the similar value with derived cetane number, but cetane index showed quite different value with cetane number when biodiesel and cetane improver were used as additives.

Effect of Pilot Injection on Combustion and Exhaust Emissions Characteristics in a Biodiesel Fueled Diesel Engine (바이오디젤 혼합연료를 적용한 커먼레일 디젤엔진에서 파일럿 분사에 따른 연소 및 배기 특성)

  • Jeong, Kyu-Soo;Lee, Dong-Gon;Roh, Hyun-Gu;Lee, Chang-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to analyze the effect of pilot injection strategy on the combustion and emissions characteristics in a four cylinder common-rail direct injection diesel engine fueled with biodiesel(soybean oil) blend. The tested fuel was mixed of 20% biodiesel and 80% ULSD(Ultra low sulfur diesel) by volume ratio. The experiments were performed under two load conditions, and results were compared with those of single injection. The experimental results showed that the ignition delay of BD20 was shorter than compared to that of ULSD in the case of low load condition. Also, the fuel consumption of BD20 was more higher than that of ULSD. Fuel consumption by applied pilot injection strategy were generally decreased compared with that of single injection. In the case of pilot injection, the exhaust emissions such as CO and HC emissions were decreased compared to the single injection.

Effect of Nozzle Orifice Shape and Nozzle Length-to-Diameter Ratio on Internal and External Flow Characteristics of Diesel and Biodiesel Fuel (노즐 오리피스 형상 및 형상비가 디젤과 바이오디젤 연료의 노즐 내부 및 외부 유동특성에 미치는 영향)

  • Park, Su-Han;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.264-272
    • /
    • 2007
  • The aim of this study is to investigate the effects of nozzle orifice shapes and the nozzle length-to-diameter ratio(L/D) on the nozzle cavitation formation inside the orifice and the external flow pattern. The nozzle used in this work was tested the taper orifice nozzle and the rectangular orifice nozzle which was made from the transparent acrylic acid resin. For studying the effect of the nozzle L/D ratio, it was used to three L/D ratios of 3.33, 10, and 20. The cavitation flow of nozzle was visualized by using the ICCD camera and optical system. This work revealed that the flow rate and discharge coefficient($C_d$) of the taper orifice nozzle was larger than those of the rectangular orifice nozzle at the same injection pressure. The cavitation flow was observed in the nozzle orifice at the low injection pressure and the breakup of liquid jet was promoted as the L/D ratio is decreased. The cavitation of biodiesel fuel was formed at the lower injection pressure than that of diesel fuel because of higher viscosity and density.

The Study of Fuel Properties for Biodiesel Derived from Duck's Oil (오리기름으로부터 합성된 바이오젤의 연료특성 연구)

  • Lim, Young-Kwan;Lee, Cheon-Ho;Jung, Choong-Sub;Yim, Euisoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.103.2-103.2
    • /
    • 2010
  • Biodiesel was well known for eco-friendly alternative fuel for petrodiesel. But biodiesel have disadvantage such like it was derived from food resource which was high price. In this study, We synthesized the biodiesel from duck's oil which was food trash via transesterification under base catalyst. After analytic result of density, kinematic viscosity, cold temperature characteristics, lubricity and cetane number which were main fuel characteristics, this duck's biodiesel have enough to fuel specification for except of domestic winter season.

  • PDF

Influence of chemical treatments on surface properties of marine algae (해조류 부산물의 화학적 처리에 따른 표면특성 분석)

  • Sim, Ina;Han, Seongok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.176.2-176.2
    • /
    • 2011
  • 전 세계는 화석연료의 과사용으로 에너지 고갈과 환경오염의 문제에 직면하고 있으며, 자연과 공존하며 지속성장할 수 있는 신재생에너지의 이용확대에 대한 개발이 부각되고 있다. 이에 따라 지속적인 발전과 함께 에너지보존 및 효율적인 환경보존을 위한 대체 가능한 새로운 에너지의 개발에 관심이 모아지고 있다. 최근 부각되고 있는 바이오에너지(바이오에탄올, 바이오디젤, 바이오가스 등)를 생산하는 여러 가지 새로운 바이오매스 중 해조류는 이산화탄소 흡수 능력이 매우 뛰어나고, 에너지 저장성이 우수하다는 장점이 있다. 본 연구에서는 새로운 바이오매스원인 해조류의 부산물의 표면 특성 및 바이오복합재료의 보강재로써의 이용가능성에 대해 분석하였다. 바이오복합재료에서 소수성인 고분자와의 상호보완적 계면 결합은 보강재의 중요한 특성 중 하나이다. 해조류 부산물의 표면을 화학적 처리함으로써 폴리머 매트릭스와 해조류 부산물 사이의 계면결합이 향상됨을 기대할 수 있으며 이에 따라 해조류 부산물을 보강재로 사용한 바이오복합재료의 기계적 강도 또한 향상됨을 기대할 수 있다. 본 연구에서는 원자힘현미경(Atomic force microscope; AFM)을 사용하여 해조류 부산물의 화학적 처리에 따른 표면특성을 관찰하였으며, 친환경적인 바이오매스인 해조류 부산물을 바이오복합재료의 보강재로써의 이용가능성에 대해 연구함으로써, 지구온난화의 주원인인 온실가스 발생을 줄이고, 자원고갈이라는 에너지 위기를 극복할 수 있는 친환경적인 대안을 제시 할 수 있다.

  • PDF

Recent Trends of Using Alternative Nutrient Sources for Microalgae Cultivation as a Feedstock of Biodiesel Production (바이오디젤 생산원료로써 미세조류의 배양을 위한 대체 영양원 사용 기술)

  • Dang, Nhat Minh;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Microalgae is considered as one of environmentally sustainable and potential feedstocks to produce biodiesels. However, recent studies on life cycle assessments (LCA) of microalgal buidiesels have shown that energy requirement is not small to produce biodiesel from microalgae, especially during cultivation stage. The costs for carbon sources, nutrients like nitrogen or phosphorous, and water for cultivation can contribute up to 80% of the total medium costs. In the present article, recent trends on the utilization of several promising nutrient sources such as municipal wastewaters, organic fertilizers, combustion exhaust emissions and organic solid wastes were reviewed, and the potential strategies to be used as substitutes of artificial culture media, especially for the biodiesel production, were discussed.

An Experimental Study on the Combustion and Emission Characteristics of Blends of GTL / Biodiesel in Diesel Engine (GTL/바이오디젤 혼합 연료의 연소 및 배기배출물 특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Yong-Gyu;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.39-45
    • /
    • 2009
  • An experimental research with 2.0 liter 4-cylinder turbocharged diesel engine was carried out to investigate the combustion and emission characteristics for various alternative fuels. The conventional diesel fuel, neat GTL, blends of 80% of GTL and 20% of biodiesel derived from waste cooking oil are utilized without any modification of engine hardware and ECU data. For GTL and blends of GTL/biodiesel fuel, the ignition delay decreased at the same operating conditions, and overall combustion duration increased slightly. Also, the peak cylinder pressure increased for blends of GTL/biodiesel compared to diesel and GTL fuel. THC and CO emissions with blends of GTL/biodiesel compared to other fuels decreased for the low and middle load conditions. But NOx emission increased due to oxygen content in biodiesel. The number concentrations of PM are higher for blends of GTL/biodiesel than other test fuels in the nucleation mode, while it had an opposite tendency in the accumulation mode, which implies more reduction of PM for blends of GTL/biodiesel on the base of mass concentration.