• Title/Summary/Keyword: 바이오디젤연료

Search Result 235, Processing Time 0.022 seconds

Study on Potential Feedstock Amount Analysis of Biodiesel in Korea (한국의 바이오디젤 원료 잠재량 분석 연구)

  • MIN, KYONG-IL;PARK, CHEON-KYU;KIM, JAE-KON;Na, BYUNG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.447-461
    • /
    • 2016
  • Recently, the Renewable Fuel Standard(RFS) has been commenced from July 31, 2015 in the New and Renewable Energy Act for expanding the supply of renewable energy and reduction of national GHG target in Korea. The biodiesel is only a means of implementation for the RFS, therefore the biodiesel supply expansion is important for fulfilling the RFS obligation policy. The major key points of the biodiesl supply are expanding domestic feedstocks due to the over 60% dependence on foreign feedstock and reducing the price of feedstock because of the over 70% occupation of feed stock price in the biodiesl production cost. Therefore, we estimated actual amount of potential feedstocks which are possible to use for biodiesl production in Korea and investigated technical and political improvements for expanding biodiesl. For estimating a potential feedstocks, first selected the potential biodiesl feedstocks by investigating the status of global biodiesl feedstocks and then analyzed the possible potential amount of each feedstock by surveying the generation situations, the distribution structures and the technical level.

Removal of Free Fatty Acid in used oil on Zeolite Catalysts (제올라이트 종류에 따른 유리지방산 제거 특성)

  • Chang, Duk-Rye;Oh, Sung-Hwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.263-265
    • /
    • 2008
  • 자원 재활용 및 에너지 생산관점에서 폐유지로부터 환경친화적인 연료인 바이오디젤에 대한 연구가 활발히 진행되고 있다. 특히 폐유지내 함유된 유리지방산 및 수분에 의해 효율적인 에스테르화 반응이 어렵기 때문에 이를 전처리 단계에서 제거되어야 한다. 본 연구에서는 폐유지내 유리지방산을 효과적으로 제거하기 위하여 회분식 반응기에서 제올라이트 촉매의 종류에 의한 세공구조와 산성도 변화에 따른 유리지방산 전환반응에 미치는 영향을 조사해 보았다. 제올라이트 촉매의 유리지방산 전환율은 세공구조와 산성도에 따라 큰 차이를 나타내었다. 유리지방산 전환율은 FAU < MOR < MFI < BEA의 순으로 높았다. 제올라이트의 세공구조는 1차원적인 구조를 가질 경우 탄소침적이 일어나지만 3차원적인 세공구조를 가지는 경우 탄소침적에 의한 촉매의 활성저하가 감소된다. 또한 제올라이트의 산성도에 따른 특성으로는 유리지방산의 전환반응에는 중간정도의 산세기를 가진 촉매가 유리함을 확인하였다. 그러므로 폐유지로부터 유리지방산을 제거하기 위한 우수한 제올라이트 촉매로는 BEA 제올라이트 촉매임을 확인하였다.

  • PDF

A Study on Sprny and Combustion Characteristics by Temperature of Biodiesel Fuel (바이오디젤 연료온도에 따른 분무 및 열소특성에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.152-157
    • /
    • 2008
  • The biodiesel becomes one of the favorite alternative fuel applied to diesel engines. This research aims to understand the physics of spray and combustion characteristics of a biodiesel fuel in a constant volume chamber. For spray visualization, biodiesel was injected into a combustion chamber and a high speed camera was applied at various combustion conditions. To investigate heat-release rates and flame propagations, spark was ignited on a hydrogen fuel for the premixed combustion and then biodiesel was injected directly. In addition, parametric study was made by various geometries of combustion chambers and temperatures of fuels and injection pressures. This technology may contribute to improve the performance of bio-diesel engine and reduce emissions in future.

An Experimental Study on the Combustion an Emission Characteristics with Injection Pressure of Biodiesel-Ethanol Blending Fuel in CVC (정적연소기 내 바이오디젤-에탄올 혼합연료의 분사압력에 따른 연소 및 배출가스에 관한 연구)

  • Eom, Dong-Seop;Park, Kyoung-Gyun;Dong, Yoon-Hee;Lee, Seang-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.150-156
    • /
    • 2010
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of blending fuel and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber. High speed camera was applied to visualize the physics of development of combustion processes, and combustion pressure and exhaust emissions were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

An Experimental Study on Combustion Characteristics of Biodiesel Fuel in Marine Diesel Engine (선박디젤기관에서 바이오디젤연료의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.29-35
    • /
    • 2015
  • Environmental pollution is produced by consumption of fossil fuel, therefore alternative fuels is interested for development of new energy resources and reduction of exhaust emissions for air pollution prevention. Biofuels are produced from new vegetable oil and animal fat, may be used as fuel without change of engine structure in diesel engine. In this paper, the test results on specific fuel consumption, combustion characteristics of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodiesel was produced from biodiesel fuel at our laboratory by ourselves. This study showed that specific fuel consumption is increased slightly, on the other hand cylinder pressure, rate of pressure rise, rate of heat release and soot were decreased slightly in the case of biodiesel blends than neat diesel oil.

The Characteristics of Performance and Exhaust Emission on Simultaneous Application with Biodiesel Fuel and Oxygen Component in a C.I. Engine (압축착화기관에서 바이오디젤유 및 함산소성분 동시적용시 성능과 배기배출물 특성)

  • Choi, S.H.;Oh, Y.T.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions from the diesel engines are recognized as main cause which has a great influence on environment. In this study, the potential of biodiesel fuel and oxygenated fuel(ethylene glycol mono-n-butyl ether; EGBE) was investigated as an effective method of decreasing the smoke emission. The smoke emission of blending fuel(EGBE 0~20 vol-%) was reduced in comparison with diesel fuel and it was reduced approximately 64% at 2000 rpm, full load in the 20% of blending rate. On the contrary NOx emissions from biodiesel fuel and EGBE blended fuel were increased compared with diesel fuel. Torque and brake specific energy consumption(BSEC) didn't have large differences.

Spray and Combustion Characteristics of Biodiesel-Ethanol Blending Fuel (바이오디젤-에탄올 혼입연료의 분무 및 연소특성)

  • Eom, Dong-Seop;Choi, Yeon-Soo;Choi, Yong-Seok;Lee, Seang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber by obtaining some fundamental data in order to improve combustion atmosphere. To understand the physics of combustion, high speed camera was applied to visualize the development of combustion processes, and combustion pressure and exhaust emission were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

A Study on the Atomization of a Highly Viscous Biodiesel Oil (고점성 바이오 디젤유의 분무미립화에 관한 연구)

  • 주은선;정석용;강대운;김종천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.146-153
    • /
    • 1997
  • An experiment was conducted to figure out the atomization characteristics of a highly viscous biodiesel fuel with rice-barn oil applying and ultrasonic energy into it. A spray simulator for the droplet atomization, an ultrasonic system, and six different nozzles(3 pintle-type nozzles and 3 single hole-type nozzles) were made. To investigate effects of ultrasonic energy in a highly viscous liquid fuel, an immersion liquid method was used as a measurement method on droplet size distributions. It was found that the ultrasonic energy was effective for the atomization improvement of the rice-bran oil as a highly viscous biodiesel fuel and the factor나 such as the nozzle opening pressure, pin-edge angles, hole diameters, and collection distances affected the atomization of spray droplets.

  • PDF

Study on free and bond glycerines in Biodiesel from PKO(Palm Kernel Oil) and coconut oil (PKO 및 코코넛유래 바이오디젤 중 글리세린함량 분석 방법 개선 연구)

  • Lee, Don-Min;Park, Chun-Kyu;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.348-361
    • /
    • 2015
  • To reduce the effects of greenhouse gas (GHG) emissions, the government has announced the special platform of technologies as parts of an effort to minimize global climate change, and the government distributed biodiesel since 2006 as the further efforts. Although there are some debates about some quality specifications and unbalanced of source (44% from palm oil), more than 400kton/year of biodiesel was produced in 2013. Moreover the amounts will be increased when the RFS is activated. To solve the unbalanced situation and to achieve the diversity of feeds, it is essential that many researches should be considered. Especially, free and bond glycerines are one of the important properties seriously affected to the combustion system in vehicle & cold properties. Previous method (KS M 2412) couldn't cover the biodiesel derived from lauric oil($C_{12:0}$) such as PKO (Palm Kernel Oil), Coconut oil because those compositions are lighter than other conventional biodiesel sources. In this study, we review the existed method and figure out the factors should improve to analysis the glycerine from PKO and Coconut oil biodiesel. Modifying the analysis conditions to enhance the resolution and change the internal standards to avoid the overlapped- peaks between Capric acid ME ($C_{10:0}$) and standard#1(1,2,4-butantriol). From this revised method, we could solve the restrictions of previous methods. And check the possibility of new method to analyze the glycerine in biodiesel regardless of sources.

The Effect of Soybean Oil and Waste Chicken Oil Mixing Ratio on Biodiesel Characteristics (대두유와 폐계유의 혼합비가 바이오디젤 특성에 미치는 영향)

  • Kwack, Jong Won;Kim, Tae Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.261-267
    • /
    • 2017
  • The interest in biodiesel is increasing rapidly. As a result, the price of vegetable oil that is used as a raw material for biodiesel is skyrocketing. Studies of biodiesel using animal waste as a means of solving these problems are underway. Biodiesel produced from animal fat contains considerably more saturated fatty acids than that produced from vegetable oil. In addition, it has a high cetane number and a high heating value. On the other hand, the fluidity decreases at lower temperatures because of the large amount of saturated fatty acids. For the biodiesel production, waste chicken oil and soybean oil were first purified. The raw materials were mixed at various ratios from 1:9 to 9:1. The methanol / oil molar ratio was also changed from 7 mol to 15 mol. The entire reaction time was one hour. The results showed that the optimal mixing ratio of soybean oil to waste chicken oil was 3:7, and the optimal methanol / oil molar ratio was 13. Moreover, the BD yield was 90.2%, the FAME content was 96.6%, and the LAME content was 4.1%. This result satisfied the Korea Industrial Standard (KSM2413).