• Title/Summary/Keyword: 바이어스 오차

Search Result 92, Processing Time 0.016 seconds

Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography (${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교)

  • Lee, Jae-Sung;Lee, Dong-Soo;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.288-300
    • /
    • 2003
  • Purpose: To obtain regional blood flow and tissue-blood partition coefficient with time-activity curves from ${H_2}^{15}O$ PET, fitting of some parameters in the Kety model is conventionally accomplished by nonlinear least squares (NLS) analysis. However, NLS requires considerable compuation time then is impractical for pixel-by-pixel analysis to generate parametric images of these parameters. In this study, we investigated several fast parameter estimation methods for the parametric image generation and compared their statistical reliability and computational efficiency. Materials and Methods: These methods included linear least squres (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted Integration (WI), and model-based clustering method (CAKS). ${H_2}^{15}O$ dynamic brain PET with Poisson noise component was simulated using numerical Zubal brain phantom. Error and bias in the estimation of rCBF and partition coefficient, and computation time in various noise environments was estimated and compared. In audition, parametric images from ${H_2}^{15}O$ dynamic brain PET data peformed on 16 healthy volunteers under various physiological conditions was compared to examine the utility of these methods for real human data. Results: These fast algorithms produced parametric images with similar image qualify and statistical reliability. When CAKS and LLS methods were used combinedly, computation time was significantly reduced and less than 30 seconds for $128{\times}128{\times}46$ images on Pentium III processor. Conclusion: Parametric images of rCBF and partition coefficient with good statistical properties can be generated with short computation time which is acceptable in clinical situation.

Software Reliability Growth Modeling in the Testing Phase with an Outlier Stage (하나의 이상구간을 가지는 테스팅 단계에서의 소프트웨어 신뢰도 성장 모형화)

  • Park, Man-Gon;Jung, Eun-Yi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2575-2583
    • /
    • 1998
  • The productionof the highly relible softwae systems and theirs performance evaluation hae become important interests in the software industry. The software evaluation has been mainly carried out in ternns of both reliability and performance of software system. Software reliability is the probability that no software error occurs for a fixed time interval during software testing phase. These theoretical software reliability models are sometimes unsuitable for the practical testing phase in which a software error at a certain testing stage occurs by causes of the imperfect debugging, abnornal software correction, and so on. Such a certatin software testing stage needs to be considered as an outlying stage. And we can assume that the software reliability does not improve by means of muisance factor in this outlying testing stage. In this paper, we discuss Bavesian software reliability growth modeling and estimation procedure in the presence of an imidentitied outlying software testing stage by the modification of Jehnski Moranda. Also we derive the Bayes estimaters of the software reliability panmeters by the assumption of prior information under the squared error los function. In addition, we evaluate the proposed software reliability growth model with an unidentified outlying stage in an exchangeable model according to the values of nuisance paramether using the accuracy, bias, trend, noise metries as the quantilative evaluation criteria through the compater simulation.

  • PDF