• Title/Summary/Keyword: 바이몰프 액츄에이터

Search Result 3, Processing Time 0.018 seconds

Focal Length Control of Line-focus Ultrasonic Transducer Using Bimorph-type Bending Actuator (바이몰프형 밴딩 액츄에이터를 이용한 선집속형 초음파 트랜스듀서의 초점 거리 제어)

  • 채민구;하강열;김무준
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.202-207
    • /
    • 2003
  • For medical ultrasonic transducer, phase-weighting method has been used for controlling focal length with electric circuit at each vibrating element. However, the electric circuit is complex as the number of vibrating elements is increased. In this paper, we fabricated line-focus transducer with a bimorph-type piezoelectric actuator. The polyvinylidene fluoride (PVDF) piezoelectric type polymer film is used for transmitting and receiving of ultrasonic signal. Using this transducer, focal length of the transducer can be controlled mechanically by changing voltage of the actuator. It is confirmed that focal length of the transducer can be controlled in range of 1095 to radius of curvature.

Electric Power Generation from Piezoelectric Ceramics (압전 세라믹을 이용한 전기 발전)

  • Paik, Jong-Hoo;Shin, Bum-Seung;Lim, Eun-Kyeong;Kim, Chang-Il;Im, Jong-In;Lee, Young-Jin;Choi, Byung-Hyun;Kim, Dong-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.304-304
    • /
    • 2006
  • One method of Electric Power Generation is to use piezoelectric materials, which form transducers that are able to interchange electrical energy and mechanical force or strain. This study describes the fabrication and properties of piezoelectric transducers for Power Generation application. The structure of the transducers was ceramic-metal-ceramic 3-layered parallel type The center metal layer of phosphorous bronze was bonded by two piezoelectric layers of which have sputtered Ag/Cu(or Ni/Cu) electrode layers on both sides.. The Energy generated by the vibration of piezoelectric transducers Can be achieved by adjusting a suitable piezoelectric constant and mechanical structures. The piezoelectric material used in this application showed the electrical properties of r=4400, $d_{33}\;=\;750\;(10^{-12}\;m/V)$, $d_{31}\;=\;-300\;(10^{-12}\;m/V)$, $k_{33}\;=\;71%$, $Qm\;=\;85$, $T_c\;=\;210^{\circ}C$.

  • PDF

Piezoelectric and Electro-induced Strain Properties of $(Pb_{1-2x/3}Bi_x)[(Ni_{1/3}Nb_{2/3})_{0.4}(Ti_{0.6}Zr_{0.4})_{0.6}]O_3$Ceramics with the Substitution of $Bi_2O_3$ ($Bi_2O_3$치환에 따른 $(Pb_{1-2x/3}Bi_x)[(Ni_{1/3}Nb_{2/3})_{0.4}(Ti_{0.6}Zr_{0.4})_{0.6}]O_3$ 세라믹스의 압전 및 전계유기 왜형 특성)

  • 윤현상;정회승;임인호;윤광희;김준한;박창엽
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.434-439
    • /
    • 1997
  • It this paper, the piezoelectric and electro-induced strain properties of (P $b_{1-}$2x/3/B $i_{x}$ )[N $i_{1}$3/N $b_{2}$3/)$_{0.4}$( $Ti_{0.6}$Z $r_{0.4}$)$_{0.6}$] $O_3$ceramics (x=0, 0.005, 0.02) were investigated with the substitution of B $i^{3+}$, and the feasibility of the application for bimorph actuator was evaluated by measuring the dynamic properties of the piezoelectric bimorph fabricated with above ceramics. Dielectric constant was enhanced with the increase of B $i^{3+}$ substitution, and appeared the maximum value of 5032 at x=0.01 composition. Increasing the substitution of B $i^{3+}$, the electromechanical coefficient( $k_{p}$ , $k_{31}$ ) was increased up to the substitution of 0.5 mol% B $i^{3+}$, showed the value of 0.656, 0.439, respectively. The piezoelectric constant( $d_{33}$ $d_{31}$ ) had the highest value of 344, 825 with the substitution of 0.5 mol% B $i^{3+}$. The strain, generated by 60 Hz AC electric field, had the largest value of 1200($\times$10$^{-6}$ $\Delta$1/1) in the composition with the substitution of 0.5 mol% B $i^{3+}$. The dynamic properties of the bimorph actuator, fabricated with the composition substitution of 0.5 mol% B $i^{3+}$, showed the largest value of 325 $\mu$m at $\pm$150 V square pulse. square pulse.are pulse..

  • PDF