• Title/Summary/Keyword: 바람길 분석

Search Result 85, Processing Time 0.042 seconds

Classification of Wind Corridor for Utilizing Heat Deficit of the Cold-Air Layer - A Case Study of the Daegu Metropolitan City - (냉각에너지를 활용한 바람길 구성요소 분류 - 대구광역시를 사례로 -)

  • Sung, Uk-Je;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.70-83
    • /
    • 2023
  • Recently, the Korea Forest Service has implemented a planning project about wind corridor forests as a response measure to climate change. Based on this, research on wind corridors has been underway. For the creation of wind corridor forests, a preliminary evaluation of the wind corridor function is necessary. However, currently, there is no evaluation index to directly evaluate and spatially distinguish the types of wind corridors, and analysis is being performed based on indirect indicators. Therefore, this study proposed a method to evaluate and classify wind corridors by utilizing heat deficit analysis as an evaluation index for cold air generation. Heat deficit was analyzed using a cold air analysis model called Kaltluftabflussmodell_21 (KLAM_21). According to the results of the simulation analysis, the wind path was functionally classified. The top 5% were classified as cold-air generating Areas (CGA), and the bottom 5% as cold-air vulnerable Areas (CVA). In addition, the cold-air flowing Areas (CFA) were classified by identifying the flow of cold air moving from the cold air generation area. It is expected that the methodology of this study can be utilized as an evaluation method for the effectiveness of wind corridors. It is also anticipated to be used as an evaluation index to be presented in the selection of wind corridor forest sites.

Wind Road Analysis System Using GIS (GIS를 활용한 바람길 분석시스템)

  • Park, Tae-Og;Kim, Nam-Mi;Kim, Kyung-Jong;Kim, Do-Hoon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.98-103
    • /
    • 2003
  • 환경이 하나의 도시계획 요소로 작용하고 있는 상황에서 기후요소인 바람을 도시계획시 고려하여, 기존의 도시계획과는 다른 관점을 제시해 주는 분석시스템이다. 기상자료 및 해당 도면의 속성자료를 토대로 GRID분석과 Kriging보간 알고리즘을 구현하여 대상지역의 온도분포 및 바람흐름, 바람통로를 찾아내고자 하였다. 기후지도를 이용하여 주요 바람길을 파악할 수 있으며 대상지내 신선한 공기가 시작되는 녹지들을 추출하여 녹지계획의 핵으로 정한다. 녹지의 핵으로부터 각각의 녹지로 연결되는 바랑의 길을 분석하여 도시계획업무추진 시 바랑통로가 단절된 곳이나 단절된 계획이 있는 곳을 파악한다. 그리고 바람통로를 위해서 보존할 곳과 올바른 바람을 유도할 곳 등을 생성한다. 또한 본 연구에서는 열섬현상이 빈번히 발생하는 대구시를 대상지로 정하여 Landsat TM영상을 활용 도시의 열섬현상을 분석하고 시스템을 통해 제작된 기후지도를 활용한 열섬 현상 저감방안도 모색하였다.

  • PDF

Analysis and Utilization Strategies of Ventilation Corridor Characteristics in Jeon-ju Area (전주지역의 바람길 특성 분석 및 활용 방안)

  • Eum, Jeong-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.366-374
    • /
    • 2019
  • This study aims to analyze the characteristics of ventilation corridor and propose its utilization strategies in Jeonju city in order to discuss how to utilize urban ventilation corridors as a planning factor for reducing heat wave impact and fine particle pollution. For these purposes, cold air characteristics such as cold air flow and height of cold air in Jeonju area located in the Honam Jeongmaek were analyzed and major ventilation corridors were specified. Based on them, we proposed mountain management strategies for securing and utilizing ventilation corridors. We used KALM (Kaltluftabflussmodell), a cold air simulation model developed in Germany and identified both the cold air flow and the height of cold air layer generated during 6 hours at night. As a result, the cold air flow generated in the forests located in the northeast and east sides of the Jeonju city became clear and the height of cold air layer increased in the valley terrain and farmland areas with time. In particular, Jeonju City has an ideal structure of urban ventilation corridor. Based on the results, the area where the cold air generation is active was designated as the 'cold air conservation area', and the area requiring the management for the good cold air flow was as the 'cold air management area'. This study is expected to be used as basic data of policy making and research for reducing heat wave impact and fine particle pollution such as climate change adaptation policy and urban forest plans for ventilation corridor composition.

Strategies for utilizing Urban Ventilation Corridor considering Local Cold Air in Watershed Areas - A Case Study of Uijeongbu and Gwacheon - (유역의 찬공기 특성을 고려한 도시 바람길 활용 전략 - 경기도 의정부 및 과천 일대를 사례로 -)

  • EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.133-151
    • /
    • 2019
  • This study aims to analyze cold air characteristics in the watershed areas and to suggest strategies for utilizing them in urban ventilation corridor plans. For this purpose, the Jungnangcheon watershed and Uijeongbu-si in the northern part of Gyeonggi province, and Anyangcheon watershed as well as Yangjaecheon Tancheon watershed and Gwacheon-si in the southern part were selected as study areas. We used KALM (Kaltluftabflussmodell), a cold air simulation model developed in Germany and identified both the cold air flow and the height of cold air layer generated during 6 hours at night. Uijeongbu City is located on the main stream of the Jungnangcheon watershed, and the local cold air from the southern outskirts is an important part of Uijeongbu-si's overall ventilation corridor planning. In addition, the cold air generated in the vicinity of Mt. Sapae flows into the central business district near the city hall and plays a major role in regulating the thermal environment of the city. But, the cold air flows in the eastern part of Uijeongbu-si was not smoothly. The cold air flow generated in the east of Gwanak Mountain and in the west of Cheonggye Mountain was the most active in the northern part of Gwacheon-si. This flow is also a major ventilation corridor in Anyangcheon watershed as well as Yangjaecheon Tancheon watershed. But, the southern part where the cold air flow is not smooth is planed to be developed as 'Gwacheon Knowledge Information Town Public Housing District', so rapid development is expected in the future. Hence, it is suggested that an additional ventilation corridor plan should be established based on the detailed local wind flow analysis.

Ventilation Corridor Characteristics Analysis and Management Strategy to Improve Urban Thermal Environment - A Case Study of the Busan, South Korea - (도시 열환경 개선을 위한 바람길 특성 분석 및 관리 전략 - 부산광역시를 사례로 -)

  • Moon, Ho-Yeong;Kim, Dong-Pil;Gweon, Young-Dal;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.659-668
    • /
    • 2021
  • The purpose of this study is to propose a ventilation corridor management plan to improve the thermal environment for Busan Metropolitan City. To this end, the characteristics of hot and cool spots in Busan were identified by conducting spatial statistical analysis, and thermal image data from Landsat-7 satellites and major ventilation corridors were analyzed through WRF meteorological simulation. The results showed the areas requiring thermal environment improvement among hot spot areas were Busanjin-gu, Dongnae-gu, industrial areas in Yeonje-gu and Sasang-gu, and Busan Port piers in large-scale facilities. The main ventilation corridor was identified as Geumjeongsan Mountain-Baekyangsan Mountain-Gudeoksan Mountain Valley. Based on the results, the ventilation corridor management strategy is suggested as follows. Industrial facilities and the Busan Port area are factors that increase the air temperature and worsen the thermal environment of the surrounding area. Therefore, urban and architectural plans are required to reduce the facility's temperature and consider the ventilation corridor. Areas requiring ventilation corridor management were Mandeok-dong and Sajik-dong, and they should be managed to prevent further damage to the forests. Since large-scale, high-rise apartment complexes in areas adjacent to forests interfere with the flow of cold and fresh air generated by forests, the construction of high-rise apartment complexes near Geumjeongsan Mountain with the new redevelopment of Type 3 general residential area should be avoided. It is expected that the results of this study can be used as basic data for urban planning and environmental planning in response to climate change in Busan Metropolitan City.

Application of Ventilation Corridor to Mitigate Particulate Matter for the Sejong-Si (미세먼지 저감대책으로서 바람길 적용 방안 : 세종시를 대상으로)

  • Nam, Seongwoo;Sung, Sunyong;Park, Jong-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • The purpose of this study is to verify the effects of ventilation corridor and derive adequate policy alternatives to its application for the city of Sejong, which is located in an inland of Korean Peninsula. In order to introduce the ventilation corridor in the city, it is necessary both to understand change on fresh air flow affected by the construction of new cities and to show its effects which are able to circulate air flow of the city. The study identified ventilation effects using computational fluid dynamics models. In particular, it analyzed change on wind speed and direction after constructing of a new town and cool air flow along the lowlands generated after sunset. In addition, it identified those of reducing particulate matter when arranging buildings conforming to the ventilation corridor at block level. The policy implications derived from simulation can be summarized as follows. First, it is desirable to plan ventilation corridors so that fresh air from mountains, forests, and valleys can flow into cities and mitigate the concentration of particulate matter. Furthermore, public facilities covering parks, plazas, and playgrounds should be installed preferentially to attract safe outdoor activities near to areas with low levels of particulate matter. Finally, it is adequate to prepare for a number of alternative plans by analyzing ventilation corridors when setting out district unit plan.

Air Ventilation Evaluation at Nighttime for the Construction of Wind Corridor in Urban Area (도시지역의 바람길 조성을 위한 야간시간대의 공기순환성 평가)

  • Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.16-29
    • /
    • 2013
  • The purpose of this study is to evaluate air ventilation using wind patterns of MetPhoMod program at nighttime focused on Changwon-si, Gyeongsangnam-do. Evaluation indices of air ventilation are wind resistant and retention used by results of each wind speed and diversity. The results are as follows. Vulnerable areas of air ventilation are Bonglim-dong, Bansong-dong, Yongji-dong and so on. In high-rise apartment, commercial area and single residential area of Yongji-dong, Sangnam-dong and Sapa-dong, wind is stagnated by high buildings. Therefore, these areas should construct urban spaces to circulate the wind. And to inflow persistingly the fresh wind generated in a rural area, we think that the construction of wind corridor is suggested by development plan and policy wind corridor.

Comparative Analysis of Wind Flows in Wind Corridor Based on Spatial and Geomorphological Characteristics to Improve Urban Thermal Environments (도시 열환경개선을 위한 공간지형적 특성에 따른 바람길 유동 비교 분석)

  • SEO, Bo-Yong;JUNG, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.2
    • /
    • pp.75-88
    • /
    • 2017
  • This study analyzed wind flows based on spatial and geomorphological characteristics of Daegu Metropolitan City. A three-stage analysis was performed, starting with a comparison of meteorological relationships between local wind direction (synoptic wind) and local wind flow. In the second stage the study area was subdivided into districts and suburban districts to analyze the relative change of local wind flow. In stage three, the formation of wind corridor for local wind flow, wind flow for the entire urban space, and spatial relationships between flows were verified comparatively using KLAM_21. Three results are notable, the first of which is a low correlation between synoptic wind of a region, and local wind, flow in terms of meteorology. Secondly, observations of local wind flow at five downtown districts and two suburban districts showed that there were diverse wind directions at each measurement point. This indicates that the spatial and geomorphological characteristics of areas neighboring the measurement points could affect the local wind flow. Thirdly, verifying the results analyzed using KLAM_21, compared to Atomatic Weather System(AWS) measurement data, confirmed the reliability of the numerical modelling analysis. It was determined that local wind flow in a city performs a spatial function and role in ameliorating the urban heat island phenomena. This indicates that, when an urban planning project is designed, the urban heat island phenomena could be ameliorated effectively and sustainably if local wind flow caused by immediate spatial and geomorphological characteristics is confirmed systematically and techniques are intentionally applied to connect the flows spatially within areas where urban heat islands occur.

A Study on the Effectiveness of Wind Corridor Construction forImproving Urban Thermal Environment: A Case study of Changwon, South Korea (도시 열환경 개선을 위한 취약지역 선정 및 바람길 조성 방안: 창원시를 대상으로)

  • Kim, Jong-Sung;Kang, Jung-Eun
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.187-202
    • /
    • 2021
  • This study examined the effectiveness of wind corridor construction by analyzing the thermal environment, cold air generation, ventilation, and geographical characteristics to improve urban thermal environment and establish the basis for specialized strategy in Changwon-si, Gyeongsangnam-do. Using spatial analysis and remote sensing techniques, surface temperature, land cover and land use, wind field, and slope were measured and through this, a wind corridor analysis model was constructed. As a result of the analysis as of 2020, Changwon-si generally has land cover characteristics that are advantageous for the generation of cold air, but the temperature in most urban areas is the highest, and the temperature in areas such as north Changwon area, Jinbukmyeon, Ung-dong, and Ungcheon-dong are relatively high. There was a typical trend of high average wind speed in mountain regions and low average wind speed in urban areas. Accordingly, the north Changwon area, the former Changwon downtown area, the Hogye-ri and Pyeongseong-ri areas, and the Changpo Bay area are derived as vulnerable areas to thermal environment, and various measures to reduce temperature and improve air quality that the inflow of cold air into the area considering the characteristics of each area and securing wind ventilation between the surrounding mountains, reservoirs, and park areas were proposed.

Management Strategies of Local Cold Air in Jeongmaek for utilizing urban Ventilation Corridor - A Case Study of the Nak-nam Jeongmaek - (바람길 활용을 위한 정맥의 찬공기 관리 방안 - 낙남정맥을 사례로 -)

  • EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.154-167
    • /
    • 2019
  • As urban heat environment problems occur due to climate change, urban thermal environmental problems such as heat waves and tropical nights are becoming more serious in cities. In South Korea, forest areas favorable for generating cold air account for about 63 percent of the land area. Furthermore, the Jeongmaek, the axis of the main mountain ranges of Korea, is located close to the cities. Hence, the management of cold air is an effective way to improve the thermal environment of Korean cities. We selected the Nak-nam Jeongmaek located in the southern part of Korean Peninsular as well as two cities (Jinju-si and Sancheong-gun) located at the Jeongmaek to analyze its cold air characteristics and suggest management strategies of cold air. We used KALM (Kaltluftabflussmodell), a cold air simulation model developed in Germany and identified both the cold air flow and the height of cold air layer generated during 6 hours at night. As a result, the cold air flow generated in the Jeongmaek became clear and the height of cold air layer increased with time. Based on the results, we proposed management plans to maintain and expand the cold air flow. For example, forest areas with active cold air generation were designated as 'cold air conservation areas', and areas requiring management for good cold air flow were as 'cold air management areas'. This study is expected to be useful for establishing systematic urban ventilation plan to improve thermal environment in Korea cities.