• Title/Summary/Keyword: 바닥구조

Search Result 948, Processing Time 0.024 seconds

Fabrication, Durability and Structural Characteristics of Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 제작성, 내구성 및 구조거동평가)

  • Lee Sung-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.427-434
    • /
    • 2005
  • In this study, to develop composite bridge deck of many advantages such as light weight, high strength, corrosion resistance and high durability, profile design, laminate design and finite element analysis were carried out. In the analysis, 5-girder single span bridge with composite deck was considered. Deflection serviceability, failure criteria and web buckling were evaluated. Composite deck of designed profile was fabricated with pultrusion process. The coupon tests were conducted for the fabricated deck and the results were described.

Penetration of De-icing Salt in Bare Concrete Bridge Decks in Highways (고속도로 콘크리트 노출 바닥판에서의 제설 염화물의 침투 특성)

  • Suh, Jin Won;Ku, Bon Sung;Rhee, Ji Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • In 1980s, a number of bridges with bare concrete deck were constructed on the Korea highway. After 20 years service, many bare concrete decks are still in good condition without special maintenance activity. Therefore, the application of the bare concrete deck is being reestimated from the view of construction and maintenance. As a part of the program, the characteristic of penetration(surface chloride and apparent diffusion coefficient) of de-icing salt into bare concrete bridge deck was analyzed in order to predict the service life of bridge on Korea highway.

The Composite Behaviors of Fabricated Concrete Deck Simple Bridges (바닥판조립식 단순보교량의 합성거동에 관한 연구)

  • 구민세;장성수;윤우현
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.525-535
    • /
    • 1999
  • In this study, a new method of fabricated concrete deck bridge construction is proposed. This paper details the method in which concrete multi-girders and fabricated concrete decks are rested on the upper flange of the girder and the female to female type sheat-key is formed to connect girder and deck. The finite element analysis is performed to verify the accuracy of the structural behaviors of the fabricated concrete deck bridge by comparing with experimental results. The first task performed is the analysis of the equilibrium of the member force occurring between the deck and the girder. After verifying equilibrium of the member force determined by the finite element analysis, this process is applied to the analysis of maximum member force as the position of design load. This task is utilized to determine the safety of each member according to the same scale finite element model. The final process in this study is to compare the deflection of girders used in experiment with that of the same scale finite element model to verify the strength of fabricated cincrete deck bridge. By this comparison, it is shown that the behavior of the fabricated concrete deck bridge is almost same as the finite element analysis. The second task is to analyze the load distribution effect according to the number of diaphragms and the composite effect due to the cinnection of the deck and girder by the finite element analysis. From the results of second task, it is found that the load distribution effect is not related to the number of diaphragms in case of the central loading, but is related to the number of diaphragms for eccentric loading. Analysis of the load distribution indicates that the effective number of diaphragm is three. It is also shown that the maximum deflection is decreased to almost one half due to the composite action of the deck and girder.

  • PDF

Floor Impact Noise Characteristics Depending on the Experimental Conditions Using Impact Ball (실험조건에 따른 임팩트 볼의 바닥충격음 변화 고찰)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.92-99
    • /
    • 2011
  • In Japan, bang machine has been considered to have problems about not only the impact force and frequency response which are different from the real impact sources such as children's jumping and running, but also damage in the wooden structure housing. Therefore, a new impactor for lower impact force to prevent demage in wooden structure housing was developed. The impact ball was adopted as the second standard impact source in JIS A 1418-2 and ISO 140-11. In the present study, floor impact sounds generated by impact ball with drop heights in four floors of mock-up building of Building Research Institute (BRI) similar to typical Japanese wooden structure housing were investigated and also compared to jumping sound. The results show that Impact ball sound dropped at 10 cm to 30 cm was most similar to jumping sound. And The impact sound levels at 250 and 500 Hz were more sensitive to drop height than other lower frequencies. The error that may occur from the difference of height of 10 cm up and down based on the standard drop height caused by the impact ball operated by human hands was approx. 1 dB or less only in its value of characteristic, but it must be carefully taken into Impact ball in the Korea Standard.

Experimental Study on the Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 시험을 통한 구조적 특성 분석)

  • Lee, Sung-Woo;Kim, Byung-Suk;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.325-335
    • /
    • 2006
  • In this paper, flexural test, girder-connection test and barrier-connection test for the pultruded composite bridge deck of hollow section, were carried out and its structural characteristics were evaluated. In the flexural test specimen, deflection was measured at center of the span and strains were measured at various locations to see the structural behavior up to the failure. In addition, finite element analysis was performed for the flexural test specimen and the results were compared with experiments, and load carrying capacity was evaluated. Also, field load test was conducted for the demonstration plate girder bridge and other field applications were described.

Effect of the Interface Structure and Section Shape of Isolation Material in Floating Floor Impcat Vibration Level Decrease (뜬바닥 구조에서 층간차음재의 계면구조 및 단면형상이 충격진동량 저감효과에 미치는 영향)

  • 김범수;양수영;제현수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.296-299
    • /
    • 2004
  • 단열 완충재의 하부단면에서 양각 형태가 전체 면적에서 .차지하는 비율에 따라 진동 충격음 저감량을 실험하였다. 양각 형태가 차지하는 비율이 높더라도 진동 충격음 저감량에는 큰 성능을 나타내지 않았다. 바닥 구조에서 슬래브와 상판 사이에 단열완충재를 설치할 경우 중량 충격음이 오히려 증가하는 경향을 보이고 있다. 이것은 뜬 바닥 구조에서 완충재의 설치로 인하여 슬래브와 상판간의 거동이 다르게 발생하기 때문이다.

  • PDF

A Study on Condition Assessment of the General National Road Bridge Deck (일반국도상 교량 바닥판의 상태 현황분석 연구)

  • Oh, Kwang Chin;Lee, Jun Gu;Shin, Ju Yeoul;Chang, Buhm Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.93-101
    • /
    • 2012
  • Bridge deck has a role in a comfortable and safe passage of vehicles. At the same time, it preserves upper structure against the abrasion and shearing due to impact of traffic loads in bridges or has a role to protect the plate from off adverse effect of climatic process as rain, chemicals. Currently, the total number of inspected bridges is 6,248 in the general national road and to maintain effectively, Introduction of GPR system mounted in the vehicle has been considered. In this research, the comparison and analysis of bridge deck condition on general national road has been performed with major variations of superstructure type, span lengths, located region and ages by using 'the current status of road bridge and tunnel' that is provided by MLTM(Ministry of Land, Transport and Maritime Affairs). As a result, Condition assessment grade, superstructure type, age and length were derived as a major factor to determine priority for the condition assessment.

Proposal of Domestic Road Bridge Deck Deterioration Models and Forecast of Replacement Demand (국내 도로교량 바닥판 열화모델 제안 및 교체 수요 예측)

  • Kim, Jin-Kwang;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.61-68
    • /
    • 2017
  • Bridge decks are members that rapidly deteriorated due to various environmental factors such as heavy vehicle and deicing salt, etc. As the lifespan of bridges built in Korea increases, it is expected that the demand for replacing the deteriorated bridge decks will increase. In other countries, Accelerated Bridge Construction technology using precast decks is already actively being used as a countermeasure for replacement demand of deteriorated bridge decks. In this study, bridge decks deterioration models are proposed by collecting and analysing the condition index data of domestic bridge decks. Also, the future replacement demands of deteriorated bridge decks in terms of replacement time and replacement scale are predicted.

Experimental Study of Modular Bridge Deck Made of GFRP Composite Materials (GFRP 복합재료를 이용한 조립식 교량 바닥판의 실험 연구)

  • Jeong, Jin Woo;Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.337-346
    • /
    • 2005
  • A composite bridge deck system assembled from a modular profile with double-rectangular cell has been developed for highway bridges. This study is focused on the experimental characterization of flexure performance of pultruded GFRP deck under static loading. Several tests were conducted on single modules and adhesively bonded 2 and 5-modules. The specimen details such as dimensions, material properties and fiber architecture, and experimental set-up and testing procedure have been addressed. It is found that the presented GFRP composite modular deck is very efficient for use in bridges.