• Title/Summary/Keyword: 밑면 온도

Search Result 7, Processing Time 0.025 seconds

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

Effects of the crucible shape on the temperature of sapphire crystal and the shape of melt/crystal interface in heat exchanger method (열교환법에서 도가니 형상 변화가 사파이어 결정 온도와 고/액 계면 형태에 미치는 영향)

  • 임수진;왕종회;임종인
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.155-159
    • /
    • 2004
  • Numerical analysis which is based on finite element techniques, implicit Euler method and frontal solving algorithm was performed to study the effects of the crucible shape on the temperature of sapphire crystal and the shape of the melt/crystal interface in heat exchanger method. The computer simulation described here and effective to solving the heat transport phenomena with the transition of the interface shape from hemispherical to planar. In the work, various crucibles with differently shaped corners at their bottom are considered to improve the deflection of the melt/crystal interface. The shape of the crucible should be considered as one of the variables for the process optimization.

A Study on Thermal Performance of Microchannel Waterblock for Cooling of CPU in Desktop (컴퓨터 CPU 냉각용 미세채널 워터블록의 열성능에 관한 연구)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.264-269
    • /
    • 2007
  • The microchannel waterblock has a good capability in the cooling of electronic devices. The object of this paper is to study on thermal performance of microchannel water block for cooling of CPU in desktop. The effects of header shape, liquid flow rate, and inlet temperature on the thermal performances of microchannel waterblock are investigated experimentally. Three types of waterblock with different header shape are manufactured from the micro milling and brazing processing. The experiments are conducted using water, over a liquid flow rate ranging from 0.7 to 2.0 LPM and inlet temperature ranging from 20 to $35^{\circ}C$. Waterblocks are attached both horizontally and vertically on the test section to anticipate a performance of waterblock under the actual state in computer. The base temperature and thermal resistance decrease with increasing of liquid flow rate. It was found that the sample #1 was appropriate for the prototype of liquid cooling system.

  • PDF

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Morphology of Methane/Propane Clathrate Hydrate Crystal (메탄/프로판 포접 하이드레이트 결정의 성장 특성)

  • Lee, Ju Dong;Englezos, Peter;Yoon, Yong Seok;Song, Myungho
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.400-409
    • /
    • 2007
  • Morphology of methane/propane clathrate hydrate crystal was investigated under different undercooling conditions. After the water pressurized with compound guest gas was fully saturated by agitation, medium within the vessel was rapidly undercooled and maintained at the constant temperature while the visual observations using microscope revealed detailed features of subsequent crystal nucleation, migration, growth and interference occurring within liquid pool. The growth of hydrate was always initiated with film formations at the bounding surface between bulk gas and liquid regions under all tested experimental conditions. Then a number of small crystals ascended, some of which settled beneath the hydrate film. When undercooling was relatively small, some of the settled crystals slowly grew into faceted columns. As the undercooling increased, the downward growth of crystals underneath the hydrate film became dendritic and occurred with greater rate and with finer arm spacing. The shapes of the floating crystals within liquid pool were diverse and included octahedron and triangular or hexagonal platelet. When the undercooling was small, the octahedral crystals were found dominant. As the undercooling increased, the shape of the floating crystals also became dendritic. The detailed growth characteristics of floating crystals are reported focused on the influences caused by undercooling and memory effect.

Azimuthal Distribution of Daily Maximum Temperatures Observed at Sideslopes of a Grass-covered Inactive Parasitic Volcano ("Ohreum") in Jeju Island (제주도 초지피복 기생화산("오름")의 방위별 일 최고기온 분포)

  • Seo, Hee-Chul;Jeon, Seung-Jong;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • Information on daily maximum air temperature is important in predicting the status of plants and insects, but the uneven and sparse distribution of weather stations prohibits timely access to the data in regions with complex topography. Since cumulative solar irradiance plays a critical role in determining daily maximum temperature on any sloping surfaces, derivation of a quantitative relationship between cumulative solar irradiance and the resultant daily maximum temperature is a prerequisite to development of such estimation models. Air temperatures at 8 sideslope locations with similar elevation and slope angle but aspect, circumventing a cone-shaped, grass-covered parasitic volcano (c.a., 570 m diameter for the bottom circle and 90m bottom-to-top height), were measured from June to December in 2007. Daily maximum temperatures from each location were compared with the average of 8 locations (assumed to be the temperature measured at a "horizontal reference" position). The temperature deviation at all locations increased with the day of year (or sun elevation) from summer solstice to winter solstice. Averaged over the entire period, the south facing location was warmer by $1^{\circ}C$ in daily maximum temperature than "horizontal reference" and the north facing location was cooler by $0.8^{\circ}C$ than the reference, resulting in the year round average south-north temperature difference of $1.8^{\circ}C$. In November, both south and north facing slopes showed the greatest deviation of $+2.0^{\circ}C$ and $-1.3^{\circ}C$, respectively in daily maximum temperature at monthly scale. On a daily scale, the greatest deviation was +3.8 and $2.7^{\circ}C$ at the south and north slope, respectively. The cumulative solar irradiance (on the slope for 4 hours from 11:00 to 15:00 TST) explained >60% of the variance in daily maximum temperature deviations among 8 locations, suggesting a feasibility of developing an estimation model for daily maximum temperature over complex topography at landscape scales.

Evaluation on the External Restraint Stress in Mass Concrete (매스콘크리트의 외부구속응력에 관한 검토)

  • 강석화;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.111-122
    • /
    • 1996
  • The effects of external restraint on the thermal stresses i n mass concrete are investigated through a series of parametric study. Two major factors affecting the degree of external restraint such as the ratio of length to height of the placed structure (L/H) and the elastic modulus of base structure ($E_r$) are employed as the parameters in a condition which a placing height H is 1.0m. Various conditions of I,/H and E, are analysed by a FEM program and the relationship between these two parameters is examined. The shape of stress distribution due to the external restraint is shown as linearity on the height direction of the section, and is influenced by L/H, $E_r$, and strength development of placed concrete. The external restraint can be devided by two part. One is an axial restraint and the other is a flexural restraint. When the level of external restraint is low, the structure behavior is mainly governed by flexural restraint, otherwise it is dependent on axial restraint. Comparing the calculated stress by the method of the ACI 207 committee with a finite element analysis, the fbrmer overestimates the external restraint stress when the degree of external restraint is weak, and underestimates when it is strong.