• Title/Summary/Keyword: 밀폐공간

Search Result 348, Processing Time 0.029 seconds

Numerical Analysis of Natural Convection-Radiation Heat Transfer in an Enclosure Containing Absorbing, emitting and Linear Anisotropic Scattering Medium (흡수,방사 및 선형비등방 산란 매질을 포함하는 밀폐공간내의 자연대류- 복사열전달에 대한 수치해석)

  • 차상명;김종열;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.952-964
    • /
    • 1992
  • The interaction of natural convection and radiation heat transfer in a two dimensional square enclosure containing absorbing, emitting and linear anisotropically scattering gray medium is numerically analyzed. P-1 and P-3 approximation is introduced to calculate radiation heat transfer. The effects of scattering albedo, wall emissivity, scattering anisotropy, and optical thickness on the characteristics of the flow and temperature field and heat transfer are investigated. Temperature and velocity profiles depend a great deal on the scattering albedo, and the importance of this effect increases with decrease in albelo. Planck number is another important parameter in radiation heat transfer. The increase in scattering albedo increases convection heat transfer and decreases radiation heat transfer at hot wall. However, the increase in scattering albedo decreases both convection and radiation heat transfer at cold wall. The increase in optical thickness decreases radiation heat transfer. The scattering anisotropy has important effects on the radiation heat transfer only. The highly forward scattering leads to an increase of radiation heat transfer whereas the highly backward scattering leads to an decrease of radiation heat transfer. The effect of scattering anisotropy decreases when reducing the wall emissivity.

Natural Convection Flow and Heat Transfer in an Inclined Square Containing Internal Energy Sources (내부 발열을 갖는 경사진 정사각 공간에서의 자연대류유동 및 열전달)

  • 이재헌;박만흥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.171-177
    • /
    • 1984
  • 균일하게 분포된 내부발열을 갖는 유체가 든 경사진(수평에서 45.deg.까지)정사각형 단면의 밀폐 공간 내에서의 2차원 자연대류 유동 및 열전달에 관한 수치적인 연구가 수행되었다. 4개 벽면온 도가 동일한 경계조건에서 내부발열로 인한 자연대류 유동이 Rayleigh수 1.5*$10^{5}$까지는 층 류유동 영역의 가정하에서 수치적으로 수렴되었다. 경사진 밀폐 공간에서의 유동형태 및 온도분 포는 수평인 경우에 비하여 윗쪽 벽면 근처에서 그 상이점이 많이 나타났다. 경사각도가 증가함 에 따라 평균 열전달율이 아랫쪽 벽과 오른쪽 벽에서 증가하였고 왼쪽 벽에서 감소하였으며 윗 쪽 벽에서는 거의 일정하였다.다.

A Study on the Vented Gas Explosion Characteristics of Indoor Leakage of the LPG (실내 LPG 누출시 폭발특성에 관한 연구)

  • Oh Kyu-hyung;Kim Hong;Kim Sang-sub;Jo Yoong-do;Jo Jee-whan;Oh Shin-kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.51-57
    • /
    • 1999
  • A study on the vented gas explosion characteristics were carried out with the liquified petroleum gas(LPG) which is used in domestics and industries fuel. To evaluate a damage by gas explosion and to predict a explosion hazards, a series of experiment have been performed in the regular hexahedron vessel of 270${\iota}$. A side of the vessel was made to setting a polyester diaphragm which was ruptured by explosion to simulate an accidental explosion which ruptured the window by explosion. Experimental parameters were LPG concentration, ignition position, venting area, a strength of diaphragm which was ruptured and distances from venting, Experimental results showed that vented gas explosion pressure was more affected by the diaphragm strength than the gas concentration, and the vented gas explosion pressure and blast wave pressure was increased with decreasing the venting area and increasing the strength of diaphragm. In this research we can find that a damage by vented explosion at the outside can be larger than the inside by blast wave pressure near the venting.

  • PDF

Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition (수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달)

  • 정인기;김점수;송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

Oscillatory Motion of Natural Convection in a Square Enclosure with a Horizontal Partition (정사각형 밀폐공간내에서 수평격판에 의한 자연대류의 진동현상)

  • Kim, J.S.;Chung, I.K.;Song, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 1993
  • An oscillatory motion of natural convection in a two-dimensional square enclosure fitted with a horizontal partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection has perfectly shown the periodicity with the decrease of Rayleigh number, and the stability was reduced to a chaotic state with the increase of Rayleigh number. The period of oscillation gets shorten with the decrease of the partition length and the increase of Rayleigh number. The frequency of oscillation obtained by the variations of stream function is more similar to the experimental results than that of the average Nusselt number. The stability of oscillation grows worse with the increase of Rayleigh number. The transition Rayleigh number for the chaos is gradually decreased with the increase of the partition length.

  • PDF

The study of a fire fighting characteristic by a Single Evaporating Droplet in the case of a fire of military enclosure space (군사용 밀폐공간내의 화재시 단일 증발액적에 의한 방재특성 연구)

  • 이진호;방창훈;김정수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.207-217
    • /
    • 2000
  • A fire fighting characteristic by a single evaporating droplet in the case of a fire of military enclosure space was studied experimentally. Transient cooling of solid surface by water droplet evaporation has been investigated through controlled experiments using a heated brass cylinder. Quantitative predictions of droplet evaporation time and in-depth transient temperature distribution in solid have been made. The particular interest was in the removal of thermal energy from the heated cylinder by evaporative cooling. A $10{\mu}1$ single droplet is deposited on a horizontal brass surface with initial temperatures in the range of $90^{\circ}C{\sim}130^{\circ}C.$ The results can be summarized as follows; Evaporating droplet was divided into three different configuration. Evaporation time was predicted as a function of initial surface temperature ($t_c=492.62-6.89T_{s0}+0.0248T_{s0}^2).$ The contact temperature was predicted as a function of initial surface temperature( $T_{i}$=0.94 $T_{s0}$+1.4), The parameter ${\beta}_o$ was predicted as a function of initial surface temperature( ${\beta}_0$ : 0.O0312 $T_{s0}+0.932$)>)>)

  • PDF

An investigation of laminar natural convection in a square partitioned enclosure (수평격판으로 분리된 정사각형 밀폐공간내의 층류 자연대류 해석)

  • Kim, J.S.;Chung, I.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.312-322
    • /
    • 1997
  • The natural convective flow in a two-dimensional square enclosure with horizontal partitions is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and two identical partitions were positioned perpendicularly at the mid-height of the right and left walls, respectively. The governing equations are solved by using the finite element method with Galerkin method. Calculations are made for different partition lengths, partition conductivites, and Rayleigh numbers based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). An oscillatory motion of the natural convective flow is affected significantly by the variation of the gap width and Rayleigh number. When the gap width is comparatively short, the heat transfer rate is raised with the increase of the thermal conductivity of partitions. However, for sufficiently large gap widths at higher Rayleigh numbers, the average Nusselt numbers of the conductive partitions are smaller than those of the adiabatic partitions.

  • PDF

Natural Convection in a Partially Opened Enclosure with a Horizontal Divider (수평격판을 갖는 상부가 부분 개방된 밀폐공간내의 자연대류)

  • Kim, J.S.;Chung, I.K.;Song, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.528-537
    • /
    • 1995
  • Natural convective flow and heat transfer characteristics in a partially opened enclosure fitted with a horizontal divider are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. A divider is attached perpendicularly to the vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of divider, the opening size, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for air(Pr=0.71). As result, when the opening size is fixed, the intensity of the secondary flow is weaken as the length of divider increases. The maximum heat transfer rate over the upper cold wall occurs at a position bounded on the opening. However, when the length of divider is increased considerably, its maximum occurs at the right wall. The stability and frequency of oscillation are affected by the Rayleigh number and length of divider. The Nusselt number is increased with the increase of the opening size and the increase of Rayleigh number.

  • PDF