• Title/Summary/Keyword: 밀링 황삭 가공

Search Result 7, Processing Time 0.023 seconds

Tool Fracture Detection in Milling Process (II) -Part 2: Tool Fracture Detection in Rough Milling Using Spindle Motor Current- (밀링 공정시 공구 파손 검출 (II) -제 2 편: 주축모터 전류를 이용한 밀링의 황삭 가공 중 공구파손 검출-)

  • 김기대;이강희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.110-119
    • /
    • 1998
  • Dynamic cutting force variations in milling process were measured indirectly using spindle motor current. Magnitude of the spindle motor current is independent of cutting direction. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Dynamic sensitivity of the spindle motor current is lower but cutting force was correctly represented by spindle RMS current in rough milling. In rough milling, chipping and tool fracture were well detected by the proposed tool fracture index using spindle motor current.

  • PDF

Tool Path Generation for Rough Cutting Using Octree (옥트리를 이용한 황삭 가공경로생성)

  • 김태주;이건우;홍성의
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.53-64
    • /
    • 1994
  • Rouge cutting process takes the major portion of machining operation using NC milling machine. Especially, most of the machining time is spent in this process when molds are machined. Therefore, an efficient algorithm for generating the tool path for rough cutting is suggested in this paper. The first step of the procedure is getting the volume to be machined by applying the Boolean operation on the finished model and the workpiece which have been modeling system. Basic principle of determining machining procedure is that a large tool should be used at the portion of the simple shape while a small tool should be used at the complex portion. This principle is realized by representing the volume to be machined by an octree, which is basically a set of hexahedrons, and matching the proper tools with the given octants. When the tools are matched with the octants, the tool path can be derived at the same time.

A Study on the Improvement of Surface Waviness by Cutting Force Control (밀링머신의 절삭력 제어를 통한 표면굴곡도 향상에 관한 연구)

  • 오준호;정충영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.206-214
    • /
    • 1988
  • To improve the surface waviness in the peripheral milling, the feedrate is controlled so that the cutting force measured in the normal direction to the workpiece is constant. A discrete time first order model between the feedrate and the tool deflection is derived for the control. It has been shown by the analysis that the tool deflection is directly related to the feedrate and largely affects the surface waviness during cutting. The experimental results shown that the surface waviness is drastically improved by the proposed methods.

Automatic Tool Selection and Path Generation for NC Rough Cutting of Sculptured Surface (자유곡면의 NC 황삭가공을 위한 자동 공구 선정과 경로 생성)

  • Hong, Sung Eui;Lee, Kun woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.28-41
    • /
    • 1994
  • An efficient algorithm is proposed to select the proper tools and generate their paths for NC rough cutting of dies and molds with sculptured surfaces. Even though a milling process consists of roughing, semi-finishing, and finishing, most material is removed by a rough cutting process. Therfore it can be said that the rough cutting process occupy an important portion of the NC milling process, and accordingly, an efficient rough cutting method contributes to an efficient milling process. In order work, the following basic assumption is accepted for the efficient machining. That is, to machine a region bounded by a profile, larger tools should be used in the far inside and the region adjacent to relatively simple portion of the boundary while smaller tools are used in the regions adjacent to the relatively complex protion. Thus the tools are selected based on the complexity of the boundary profile adjacent to the region to be machined. An index called cutting path ratio is proposed in this work as a measure of the relative complexity of the profile with respect to a tool diameter. Once the tools are selected, their tool paths are calculated starting from the largest to the smallest tool.

  • PDF

An unified rough and finish cut algorithm for NC machining of free form pockets with general polygon - Part 2. Experiment (일반적인 내벽을 가진 자유바닥 곡면 파켓의 NC 가공을 위한 단일화된 황삭과 정삭 알고리즘 - Part 2. Experiment)

  • Choi, Yong-Hoon;Kim, Sang-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.46-53
    • /
    • 2007
  • NC (Numerical Control) code for the tool path needs to be generated efficiently for machining of free form pockets with arbitrary wall geometry on a three axis CNC machine. The unified rough and finish cut algorithm and the tool motion is graphically simulated in Part 1. In this paper, a grid based 3D navigation algorithm simulated in Part 1 for generating NC tool path data for both linear interpolation and a combination of linear and circular interpolation for three-axis CNC milling of general pockets with sculptured bottom surfaces is experimentally performed and verified.

  • PDF

A unified rough and finish cut algorithm for NC machining of free form pockets with general polygon - Part 1. Simulation (일반적인 내벽을 가진 자유바닥 곡면 파켓의 NC 가공을 위한 단일화된 황삭과 정삭 알고리즘 - Part 1. Simulation)

  • Park, Yong-hoon;Cho, Chi-woon;Kim, Sang-jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 2004
  • The tool path needs to be determined in an efficient manner to generate the final NC (numerical control) code for efficient machining. This is particularly important in machining free form pockets with an arbitrary wall geometry on a three-axis CNC machine. Many CAD/CAM systems use linear interpolation to generate NC tool paths for curved surfaces. However, this needs to be modified to improve the smoothness of the machined bottom surface, reduce machining time and CL (cutter location) file size. Curved machining can be a solution to reduce these problems. The unified rough and finish cut algerian and the tool motion is graphically simulated. In this paper, a grid based 3D navigation algorithm for generating NC tool path data for both linear interpolation and a combination of linear and circular interpolation for three-axis CNC milling of general pockets with sculptured bottom surfaces is developed.

  • PDF

A Study on Effect of Tool Wear Rate upon Cutting Tool Shape in a Titanium Rough Cut Machining (티타늄 황삭가공에 있어서 공구형상이 공구마모율에 미치는 영향에 관한 연구)

  • Jung, Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.27-33
    • /
    • 2019
  • The aviation industry has grown beyond the simple processing and assembling of aircraft parts and now designs and exports finished aircraft. In this study, the vertical CNC milling rotational speed and feed rate were parameters to investigate the life of tools according to their shape: (flat, round, and ball end mill) in the rough cutting of titanium. These tools are widely used in aircraft manufacturing and assembly. The purpose of this study is to measure the cutting temperature generated during the cutting process and calculate the rate of tool wear. This will be accomplished by measuring the tool weight before and after cutting the specimen and to compare it with the results of previous studies. Our study showed that the maximum cutting temperature increased as cutting time, tool rotational speed, and feed rate increased. The highest cutting temperatures were recorded for the ball, round, and flat end mill, respectively. Tool wear for the ball, round, and flat end mill increased as the speed and feed rate increased. The flat end mill exhibited the highest rate of wear from a minimum of 0.62% to a maximum of 2.88%.