• Title/Summary/Keyword: 밀링 주축

Search Result 23, Processing Time 0.032 seconds

Tool Fracture Detection in Milling Process (II) -Part 2: Tool Fracture Detection in Rough Milling Using Spindle Motor Current- (밀링 공정시 공구 파손 검출 (II) -제 2 편: 주축모터 전류를 이용한 밀링의 황삭 가공 중 공구파손 검출-)

  • 김기대;이강희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.110-119
    • /
    • 1998
  • Dynamic cutting force variations in milling process were measured indirectly using spindle motor current. Magnitude of the spindle motor current is independent of cutting direction. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Dynamic sensitivity of the spindle motor current is lower but cutting force was correctly represented by spindle RMS current in rough milling. In rough milling, chipping and tool fracture were well detected by the proposed tool fracture index using spindle motor current.

  • PDF

A study on the PID controller-gain tuning of the magnetically suspended milling spindle for chatter-free cutting (채터없는 안정 가공을 위한 자기베어링 밀링 주축의 PID 제어 게인 튜닝 연구)

  • 경진호;노승국;박종권;박선원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.117-120
    • /
    • 2003
  • A method for PID controller tuning based on process models for unstable processes was introduced. The optimal. proportional and derivative gains of the AMBs were determined by the tuning method and utilized for the chatter stability analysis in order to search for the chatter-free cutting region. The stability analysis results showed that the optimal gains give wider chatter-free cutting region, and as a result the proposed tuning method was confirmed to be an effective tuning method for determining the optimal gains of the AMBs.

  • PDF

Development of Main Spindle and Waterproof System for Underwater Milling Operation (수중 밀링 가공을 위한 주축 및 방수장치의 개발)

  • 이동규;이기용;이용범;이근우;박진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1158-1161
    • /
    • 2003
  • For underwater milling of parts of nuclear reactor, a waterproof main spindle system was developed. which used a servo meter. Particularly, a waterproof system is available to cope with emergencies such as an electricity failure so that it prevents hazards from cutting radioactive materials. A developed spindle was designed to be capable of horizontal and vertical cutting and structural analysis was conducted with a FEM tool(Design Space) when the forces were loaded in each axis-direction.

  • PDF

A Vibration Analysis for the Main-Spindle of a Holder in the 3-Axis CNC Tool Turret (3축 CNC 공구터렛의 홀더 주축 진동해석)

  • 이재환;김재실;이종판;추광식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.153-157
    • /
    • 2002
  • 본 연구에서는 선반가공에서 일반적인 선반작업 후 밀링이나 드릴링 가공이 가능한 복합가공기의 역할을 한번에 수행할 수 있는 CNC 공구터렛의 홀더 주축에 대한 수학적 모델링을 통하여 시스템의 횡진동 및 비틀림 진동 해석으로 발생할 수 있는 진동 문제에 대처할 수 있는 방안을 제시 하고자 한다.

  • PDF

Immersion Ration Estimation Using Spindle Motor Current during Milling (밀링공정에서 주축모터전류를 이용한 절입비 추정)

  • Cho, K.-J.;Kwon, W.-T.;Cho, D.-W.;Chu, C.-N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.222-229
    • /
    • 1999
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ration using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to cutting torque acting on a single tooth at the swept angle of cut and can be acquired form cutting torque signals. Average cutting torque per revolution can also be calculate form cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current.

  • PDF

Quantitative Analysis and Mathematical Model for Spindle Vibration of the End-Milling by Design of Experiment (실험계획법을 이용한 엔드밀 가공시 주축 진동에 대한 정량적 분석 및 수학적 모형)

  • Park, Heung-Sik;Lee, Sang-Jae;Bae, Hyo-Jun;Jin, Dong-Kyu;Kim, Young-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2004
  • End-milling have been widely used in aircraft, automobile part and moulding industry. However, various working factors such as spindle speed, feed rate and depth of cut in end-milling have an effect on spindle vibration. There it is demanded the quantitative analysis of spindle vibration in order to get the optimum surface roughness. This study was carried out to analyze an influence of working factors on spindle vibration by design of Experiment. The results are shown that mathematical model of regression equation for an influence of working factors on vibration acceleration of spindle in end-milling by regression analysis is presented.

  • PDF

A Study of Surface Roughness Prediction using Spindle Displacement (주축변위를 이용한 표면품위 예측에 관한 연구)

  • Chang H.K.;Jang D.Y.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.15-16
    • /
    • 2006
  • In-process surface roughness prediction is studied in this research. To implement in-process prediction, spindle displacement is introduced. Machined surface's roughness is assumed to be expressed in terms of spindle displacement. In-process measurement of spindle displacement is conducted using CCDS (cylindrical capacitive displacement sensor). Two prediction models are developed. One is simple linear model between measured surface roughness and values by spindle displacement. The other is multiple regression model including machining parameters like spindle speed, fee rate and radial depth of cut. Relation between machined surface roughness and roughness by spindle displacement are verified.

  • PDF

Chatter Monitoring of Milling Process using Spindle Displacement Signal (주축 변위 신호를 이용한 밀링가공의 채터 감시)

  • Chang, Hun-Keun;Kim, Il-Hae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.140-145
    • /
    • 2007
  • To improve productivity of a metal cutting process, it is required to monitor machining stability in real time. Since cutting environment is harsh against sensing conditions due to vibration, chip, and cutting fluid, etc., it is necessary to develop a robust and reliable sensing system for the practical application. In this work, a chatter monitoring system was developed and its effectiveness was proved. Spindle displacement caused by cutting was selected as a main monitoring parameter. A cylindrical capacitive displacement sensor was adopted. Chatter frequencies were identified through modal analysis. To quantify chatter vibrations, chatter correlation coefficient was introduced. The identification of the monitoring system showed a good agreement with the result of experiment.