• Title/Summary/Keyword: 밀링공정

Search Result 193, Processing Time 0.026 seconds

생산정보의 통합 활용을 위한 특징형상 및 데이터베이스 설계

  • 노형민;이충수
    • ICROS
    • /
    • v.3 no.1
    • /
    • pp.60-65
    • /
    • 1997
  • 본 고에서는 생산정보 처리 기술 중에서, 컴퓨터 이용설계와 공정설계(CAPP) 분야에서의 생산정보 통합 활용에 필요한 특징형상과 부품 관련 생산정보 통합 활용에 필요한 데이터베이스 설계라는 두 가지 경우에 국한하여 생산정보를 통합 활용하려는 연구 결과를 정리한다. 즉 밀링 가공 공정을 대상으로 "지적 공정설계 기술 개발" 과제를 통해 얻은 50개의 특징형상과, "S사 금형공장 생산관리 시스템 개발" 과제를 통해 얻은 데이터베이스 설계 방법이 정리되어 있지 않고 CAD/CAPP 통합 및 생산관리 시스템 구축이라는 일부 예에 불과하나, 새로운 연구 분야인 생산정보 통합 기술의 정립에 도움이 되기를 기대한다.술의 정립에 도움이 되기를 기대한다.

  • PDF

The Processing control of NiCuZn Ferrite (I) - Mixing and Size Reduction of Raw Materials by Wet Ball Milling. (NiCuZn Ferrite의 제조공정 제어 (제1보) - 습식 볼밀링에 의한 다성분 원료의 혼합 및 분쇄 공정의 고찰)

  • 류병환;김선희;최경숙;고재천
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.928-936
    • /
    • 1995
  • In this research, the processing control of NiCuZn Ferrite has been developed. The mixing and the size reduction of raw materials have been proceeded. In order to produce NiCuZn Ferrite, highly concentrated slurry with fixed ratio and wet ball milling were used. First, the dispersion behavior of raw mixture at the region of pH4~pH11 has been studied. Using wet ball milling operation, the best conditions of mixing and size reduction have been determined. Further more, the most suitable conditions, such as, dispersant kind, dispersant amount, milling time, and slurry concentration have been studied. The poly acrylic ammonium salt (PAN) was chosen as a suitable dispersant to have effective dispersion in basic region. The slurry of raw mixture without dispersant, showed high viscosity and poor grindability. As 0.7 wt% of PAN was added, the concentrated slurry (up to 55 vol%) was possible, and showed well grindability. After 18 h ball milling of 30 vol% of mixture slurry with 0.7 wt% of PAN, the average particle size and specific surface area of raw mixture were $0.54\mu\textrm{m}$ and $12.92m^{2}/cc$, respectively. The ball milled raw mixture, calcined at $700^{\circ}C$ for 3h, was totally changed into NiCuZn Ferrite with spinel phase.

  • PDF

Development of a Novel Fabrication Process for Multi-layered Microstructures using a Micro Milling and Deep X-ray Lithography (마이크로 밀링과 X-선 리소그래피 공정을 이용한 다층 마이크로 구조물 제작 공정 개발)

  • Kim, Jong Hyun;Chang, Suk Sang;Lim, Geunbae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.269-275
    • /
    • 2014
  • Conventional machining technologies such as a milling process have limitations in accuracy to fabricate microstructures. Deep X-ray lithography using the synchrotron radiation is a promising micromachining process with an excellent accuracy, whereas there are difficulties in the fabrication of multi-layered structures. Therefore, it is mainly used for fabricating simple mono-layered microstructures with a high aspect ratio. In this study, a novel technology for fabricating multi-layered microstructures is proposed by combining two processes. In advance, an X-ray resist material is cut and machined into various shapes and heights by the micro milling process. Subsequent X-ray irradiation process facilitates the fabrication of multi-layered microstructures. The proposed technology can overcome the limitation of the pattern accuracy in conventional milling process and the difficulty of the multi-layered machining in x-ray process. The usefulness of the proposed technology is demonstrated in this study by applying the technique in the realization of various multi-layered microstructures.

Effect of milling and sintering process on integrity of zirconia prosthesis: a literature review (밀링과 소결과정이 지르코니아 보철물의 완성도에 미치는 영향에 관한 문헌고찰)

  • Lee, Kiun;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.127-137
    • /
    • 2022
  • Zirconia is fabricated through various processes. Each element in fabricating process can affect the physical properties of the definitive prosthesis. In particular, both the milling process and the sintering process can affect the final integrity of the zirconia prosthesis. Most of the milling machines adopt the ultra-precision 5-axis machining method, and the results vary depending on which milling method was used and how the milling equipment was managed. Milling blocks are selected according to cutting efficiency and aesthetic reproducibility. The sintering method can affect the grain growth and optical properties, and an accurate evaluation can be made only with additional research on the recent speed sintering procedure. Not only the sintering temperature but also the temperature holding time can affect the quality of definitive prosthesis.

Preparation and characterization of CoAl2O4 blue ceramic nano pigments by attrition milling (어트리션밀을 이용한 CoAl2O4 나노 무기 안료의 제조 및 특성 평가)

  • Lee, Ki-Chan;Yoon, Jong-Won;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.255-264
    • /
    • 2013
  • Cobalt aluminate ($CoAl_2O_4$) is a highly stable pigment with excellent resistance to light, weather, etc., which has resulted in widespread use as a ceramic pigment. Due to the unique optical characteristics, $CoAl_2O_4$ is generally used as a coloring agent to decorate porcelain products, glass, paints and plastics. Here, $CoAl_2O_4$ pigments were synthesized by polymerized complex method and solid state reaction. Then $CoAl_2O_4$ pigment were grinded using the attrition milling with 1 mm size zirconia ball for 3 hours. The attrition milling process was performed at the constant speed of 800 rpm and ball to powder weight ratio (BPR) was 100 : 1. The characteristics of synthesized pigment were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), particle size analyser (PSA) and CIE $L^*a^*b^*$. The XRD patterns of $CoAl_2O_4$ show single phase spinel structure. The particle size of $CoAl_2O_4$ measured by FE-SEM, TEM and PSA analysis was in the range of 100~200 nm. The blue color of obtained $CoAl_2O_4$ pigments could be confirmed through CIE $L^*a^*b^*$ measurement.