Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.
군집화는 대용량의 데이터로부터 유용한 정보를 추출하는 데에 적합한 데이터마이닝 기법들 중 하나이다. 군집화 기법은 주어진 데이터그룹 내에서 사전정보 없이 의미있는 지식을 발견할 수 있으므로 큰 어려움이 없이 실제 응용분야에 적용할 수 있다. 또한, 대용량 데이터를 다룰 때에 개별적인 데이터에 대한 접근 횟수를 줄이고, 알고리즘이 다루어야 할 데이터 구조의 크기를 줄일 수 있다. 본 논문에서는 밀도-기반 군집화 기법을 기반으로 하는 새로운 군집화 기법을 제안한다. 우리가 제안하는 군집화 기법은 반복적인 군집화 과정을 통하여 군집 내 주변 잡음을 제거하고 더 세밀하게 집단을 세분화하는 것이 가능하다. 또한, 군집을 표현하는 데에 계층구조로 나타내어 각 군집의 상관관계를 파악하는 데에 유리하다. 본 논문에서 제안하는 군집화 기법을 통하여 다양한 밀도를 가진 군집들을 효과적으로 분류할 수 있을 거라고 기대된다.
본 논문에서는 천해 환경에서 고밀도로 형성되는 클러터를 제거하는 군집화 기반의 능동소나 클러터 제거 기법을 제안한다. 먼저 제안하는 기법에서는 표적의 속도, 송신 핑 주기 등을 고려하여 측정치에 대해 밀도 기반의 군집화를 수행한다. 군집으로 분류된 측정치들을 실제 표적에 대한 후보로 가정하고 군집화 되지 않은 측정치인 잡음을 제거한다. 군집화 후 군집별 표적 여부를 판단하기 위해 유효성 검사를 실시하여 표적과 클러터를 구분한다. 최종적으로 표적으로 분류되지 않은 군집의 측정치들을 클러터로 간주하여 제거한다. 제안한 기법을 모의신호와 해상실험데이터를 이용하여 성능 분석한 결과, 본 논문에서 제안한 군집화 기반의 능동소나 클러터 기법의 성능이 기존 방법보다 우수함을 확인하였다.
군집화 알고리즘은 그 종류에 따라 만들어낼 수 있는 군집의 종류와 보여줄 수 있는 정보의 수준이 차이가 난다. 밀도기반 군집화 알고리즘은 데이터 분포 상의 임의의 모양을 가진 군집을 잘 잡아내지만 보여줄 수 있는 계층정보가 매우 적거나 없는 수준이고, 반면 계층적 군집화 알고리즘은 자세한 계층 정보를 보여주지만 구 모양의 군집 외에는 잘 잡아내지 못한다. 이 논문에서는 이러한 두 군집화 방식의 대표적 알고리즘인 OPTICS와 응집 계층 군집화 알고리즘의 장점만을 취하는 계층 발생 프레임워크를 제시하고 이와 더불어 효과적 데이터 분석을 위한 여러 시각화, 상호작용 기법을 지원하는 시각적 분석 애플리케이션을 제공한다.
1960년대 퍼지 이론이 소개된 이후 데이터 마이닝을 포함한 기계 학습 분야의 군집화 작업에서 퍼지 이론이 폭넓게 사용되었다. 퍼지 C-평균 알고리즘은 가장 많이 사용되는 퍼지 군집화 알고리즘이다. 이 알고리즘은 하나의 데이터 개체가 서로 다른 소속 정도를 가지고 각 군집에 할당될 수 있도록 한다. 퍼지 C-평균 알고리즘도 K-평균 알고리즘과 같은 일반적인 군집화 알고리즘과 마찬가지로 초기 군집수와 군집 중심의 위치에 의해 최종 군집 결과의 성능 차이가 나타난다. 군집화를 위한 이러한 초기 설정은 주관적이며 이 때문에 적절치 못한 결과를 얻게 될 수도 있다. 본 논문에서는 이 문제를 해결할 수 있는 방법으로 주어진 학습 데이터의 속성을 기반으로 한 초기 군집수와 군집 중심을 결정하는 개선된 밀도 기반의 퍼지 C-평균 알고리즘을 제안하였다. 제안 방법은 격자를 사용하여 초기 군집 중심의 위치와 군집수를 결정하였다. 기존에 많이 이용되었던 객관적인 기계 학습 데이터를 이용하여 제안 알고리즘의 성능비교를 수행하였다.
사용자들은 그들의 관심이 관심지점 (POI: Point-of-Interest)과 관련이 있다는 사실을 언급하기 위해 위치 기반 소셜 네트워크에 체크인하거나 그들의 상태를 올리는 경향이 있다. 관심지역 (AOI: Area-of-Interest)을 찾는 기존 연구는 대부분 위치 기반 소셜 네트워크로부터 수집된 공간 태그된 사진과 함께 밀도 기반 군집화 기법을 사용하여 수행되었다. 반면, 본 연구에서는 POI 중심을 포함한 하나의 군집에 해당하는 POI 경계선을 추정하는 데에 초점을 맞춘다. 트위터 사용자들로부터의 공간 태그된 트윗을 사용하여 POI 중심으로부터 도달할 수 있는 적절한 반경을 찾음으로써 POI 경계선을 추정하는 밀도 기반 저복잡도 두 단계 방법을 소개한다. 두 단계 밀도 기반 추정을 통해 선택된 공간 태그의 convex hull로써 POI 경계선을 추정하는데, 각 단계에서 다른 크기의 반경 증가를 가정하여 진행한다. 제안한 방법은 기본 밀도 기반 군집화 방법보다 계산 복잡도 측면에서 우수한 성능을 가짐을 보인다.
본 논문에서는 특정 매개변수의 입력 없이 속성(attribute)에 따른 목적속성(class)값의 분포를 고려하여 연속형(conti-nuous) 값을 범주형(categorical)의 형태로 변환시키는 새로운 방법을 제안하였다. 각각의 속성에 대해 목적속성의 분포를 1차원 공간에 사상(mapping)하고, 각 목적속성의 밀도, 다른 목적속성과의 중복 정도 등의 기준에 따라 구간을 군집화 한다. 이렇게 생성된 군집들은 각각 목적속성을 예측할 수 있는 확률적 수치에 기반한 것으로, 각 속성이 제공하는 정보의 손실을 최소화하는 이산화 경계선을 갖고 있다. 제안된 데이터 이산화 방법의 향상된 성능은 C4.5 알고리즘과 UCI Machine Learning Data Repository 데이터를 사용하여 확인할 수 있다.
음성인식 모델상의 GPDFs(Gaussian Probability Density Functions)을 효율적으로 군집화 할 수 있는 알고리즘이 제안되었다. 제안된 알고리즘은 데이터 사이의 거리 척도로 발산 거리를 사용하는 새로운 형태의 CNN(Centroid Neural Network)으로, 제한된 자원을 가지는 H/W환경의 음성인식에서 메모리 사용량을 축소하는 응용에 대한 실험 결과, 음성인식 모델인 CDHMM(Continuous Density Hidden Markov Model)에서 기존의 Dk-means(Divergence-based k-means)알고리즘을 이용한 방법과 비교하여 인식 성능의 유지와 함께 약 31.3%의 GPDFs를 더 축소할 수 있었고, 군집화 알고리즘을 적용하지 자은 전체 GPDFs를 사용한 경우와 비교해서 인식 성능의 유지와 함께 약 61.8%의 GPDFs를 압축할 수 있었으며, SNR 10㏈ 잡음 데이터에 대한 성능평가에서도 인식 성능이 유지될 수 있었다.
본 연구는 Representative Volume Element(RVE) 모델을 사용하여 초기 공극 결함이 있는 단방향 섬유강화 복합재의 횡방향 인장 강도 변화에 대해 정량적 평가 및 조사되었다. 초기 공극 결함을 표본오차와 신뢰 수준을 기준으로 적정 표본의 수가 계산된 후, 총 5000개의 초기 공극 결함이 있는 RVE 모델이 표본 집단으로 생성되었다. 표본 집단은 차원 축소법과 밀도 기반 군집 분석을 통해 유사도 분석이 진행되었으며 편향되지 않은 표본 집단임이 확인 및 검증되었다. 검증된 표본 분석 결과는 복합재 구조의 신뢰성 해석에 적용될 수 있게 Weibull 분포로 표현되었다.
본 연구는 2016년 7월부터 2017년 6월까지 인천 소재 A 대학교의 15분 단위의 일일 전기 사용량 시계열 데이터에 대해 functional data analysis 기법을 적용하여 군집화하고 각 군집의 특성을 파악하고 예측에 활용하고자 한다. 하루동안의 A 대학교의 전기 사용량은 패턴은 주중과 주말 에 큰 차이를 보이며 스플라인 기저함수로 FPCA 구한 후 이들에 대한 가우시안 분포의 혼합모형 기반 군집분석으로 3개의 군집화가 적절해 보인다. 각 군집에 대해 평균 함수, 확률밀도함수, 일들의 분포 등을 정리해 각 군집에 대한 정보와 특징을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.