• Title/Summary/Keyword: 미진동파쇄기

Search Result 5, Processing Time 0.017 seconds

A Study on the Standard Rock fracture Method Using the Finecker Plus (미진동파쇄기를 이용한 표준암반반쇄굴착공법에 관한 연구)

  • Kim Young-Geun;Kim Il-Jung;Ki Kyung-Chul
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • In this study, the standard particle velocity equations and the equation for calculating specific charge weight with application of rock fracture method using the finecker plus are suggested and the existing equation of fragmentation was transformed into one applicable to finecker plus. Standard rock fracture pattern was designed. Square root scaled equation is $V=345.39(D/\sqrt{W})^{-1.4484$. computable equation to specific charge wei인t is $W_f=(2.3\~2.5)\;f_agdV$, charge weight per hole is 0.54kg, and proportion of diameter 30cm fragmentation is about $48.7\%$. This rock fracture method nay him out to be more excellent than the other methods.

The Development and Application of Low Vibration Explosives(NewFINECKER) (미진동 화약(NewFINECKER) 개발 및 현장 적용에 관한 연구)

  • Park, Yun-Seok;Jeong, Min-Su
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • This study improved construction and cost efficiency that are disadvantages of existing low vibration crackers(low vibration cracker, plasma, etc) and introduced cases of development and practical applications of Low vibration explosives(NewFINECKER) that minimizes blast vibration. The low vibration explosives(NewFINECKER) is suitable to Type-1 among standard blasting patterns of Ministry of Land, Transport and Maritime Affairs(MLTM) and delay blasting is possible. Moreover, the low vibration explosives improve construction and work efficiency while the level of vibration is shown to be about 60~70% of normal emulsion explosives. Additionally, this study suggested standard blasting patterns, the prediction equation of blasting vibration, and construction methods.

A Case Study on the Selection and Apply of Rock Excavation Method at Urban Tunnel (도심지 터널에서의 암반 굴착공법 선정 및 적용에 관한 사례연구)

  • 원연호;신일재;기경철;이무희;손영복
    • Explosives and Blasting
    • /
    • v.20 no.1
    • /
    • pp.25-34
    • /
    • 2002
  • 일반적으로 도심지에서 터널 시공을 위한 암반굴착 작업은 주변 보안물건에 대해 직접적인 피해를 유발시킬 수 있는 공해요소인 진동을 허용기준값 이하로 제어할 수 있으면서 상대적으로 시공성과 경제성이 뛰어난 공법으로 수행되어야 한다. 본 사례에서는 각내의 대표적인 문화시설인 예술의 전당 하부를 통과하는 우면산 터널 공사현장에서 암반굴착공법으로 고려한 TTM 장비를 이용한 기계굴착, 플라즈마 공법, 유압장비를 이용한 할암공법, 겔파쇄 공법, 미진동파쇄기를 이용한 공법, 진동제어발파공법에 대한 현장 적용성을 시험시공 등을 통해 평가한 내용과 결과를 제시하였다. 비록 각 도심지 터널의 현장 상황이나 주변 여건에 따라 이 현장에서의 시험시공 내용이나 적용 결과를 그대로 적용할 수는 없겠지만, 진동제어 암반굴착 공법에 대한 시험시공이나 선정 과정에 이 사례연구가 개략적인 참고자료로 활용될 수 있을 것이다.

A Case Study on Vibration Control Method at Urban Area Using FINECKER Plus (FINECKER Plus를 이용한 도심지 진동제어 시공사례)

  • Min Hyung-Dong;Jeong Min-Su;Park Yun-Seok;Hwang Ui-Jin;Park Jun-Ho
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.49-56
    • /
    • 2006
  • There are many restrictions with a rock breaking method by using explosives in the urban area due to such safety problems as vibration, noise, and flying rock. Therefore, the use of FINECKER Plus which is mainly used as a rock breaking method (Ministry of Construction and Transportation, 2003) is gradually increasing. Accordingly, construction cases applying FINECKER Plus to the construction sites in the urban area was introduced in case studies. In addition, a comparative test on the same volume of charge applied to 360g of 1 new product 1 set and 180g of the existing FlNECKER Plus 2 sets was conducted. As a result of the test, the two cases were equivalent in breaking efficiency and the level of noise and vibration, and as for the method, the working time decreased by 32%, thus, it was proven to be excellent in terms of construction.

The Comparison of the Ground Vibration Velocity by Dynamite and Finecker Blasting (다이너마이트와 미진동파쇄기 발파에 의한 지반진동속도 비교)

  • Kim, Il-Jung
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1996
  • The results of the regression analysis and comparative study between 120 vibration events by dynamite blasting and 68 vibration events by finecker blasting which were monitored in the test blasting are as follows: The ground vibration velocity of dynamite blasting of 0.12 kg charge weight per delay at 7.4 m above the explosive is higher than that of finecker blasting of 0.96 kg charge weight per delay. In the case of 0.12 kg charge weight per delay, the ground vibration velocity of finecker blasting is equal to 5.5% of that of dynamite blasting at the 10 m distance from explosive. The decrement of ground vibration velocity of dynamite blasting of above 0.12 kg charge weight per delay is larger than that of finecker blasting of below 0.96 kg charge weight per delay. The rate of ground vibration velocity of the finecker blasting to that of dynamite blasting decreases with the distance from explosives, but increases with the decrease of charge weight per delay. The increment of ground vibration velocity of finecker blasting is less than that of dynamite blasting with the increase of charge weight per delay at the same distance from explosives. Under the condition of the constant critical ground vibration velocity or use the same charge weight per delay, the blasting working by finecker rather than by dynamite is able to be performed at the nearer place to structures.

  • PDF