• Title/Summary/Keyword: 미세 편석

Search Result 51, Processing Time 0.027 seconds

Effect of Hot-stamping Heat Treatment on the Microstructure of Al-Segregated Zone in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강 TWB 레이저 용접부내의 Al-편석부 미세조직에 미치는 핫스탬핑 열처리의 영향)

  • Jung, Byung Hun;Kong, Jong Pan;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.455-462
    • /
    • 2012
  • Al-Si coated boron steel and Zn coated DP steel plates were laser-welded to manufacture a Tailor Welded Blank (TWB) for a car body frame. Hot-stamping heat treatment ($900^{\circ}C$, 5 min) was applied to the TWB weld, and the microstructural change and transformation mechanism were investigated in the Al-rich area near the bond line of the Al-Si coated steel side. There was Al-rich area with a single phase, $Fe_3(Al,Si)$, which was transformed to ${\alpha}-Fe$ (Ferrite) after the heat treatment. It could be explained that the $Fe_3(Al,Si)$ phase was transformed to ${\alpha}-Fe$ during heat treatment at $900^{\circ}C$ for 5 min and the resultant ${\alpha}-Fe$ phase was not transformed by rapid cooling. Before the heat treatment, the microstructures around the $Fe_3(Al,Si)$ phase consisted of martensite, bainite and ${\alpha}-Fe$ while they were transformed to martensite and ${\delta}-Fe$ after the heat treatment. Due to the heat treatment, Al was diffused to the $Fe_3(Al,Si)$ and this resulted in an increase of Al content to 0.7 wt% around the Al-rich area. If the weld was held at $900^{\circ}C$ for 5 min it was transformed to a mixture of austenite (${\gamma}$) and ${\delta}-Fe$, and only ${\gamma}$ was transformed to the martensite by water cooling while the ${\delta}-Fe$ was remained unchanged.

Segregation Phenomenon of As-Cast and Heat Treatment Microstructures in Investment Casting of IN738LC Superalloy (IN738LC 초내열합금 정밀 주조의 주조 및 열처리 미세조직에 구성되는 성분 편석 현상)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.409-419
    • /
    • 2021
  • The effect of solidification rate on micro-segregation in investment casting of IN738LC superalloy was studied. In Ni-based superalloys, the micro-segregation of solute atoms is formed due to limited diffusion during cast and solidification. The microstructure of cast Ni-based superalloys is largely divided into dendrite core of initial solidification and interdendrite of final solidification. In particular, mosaic shaped eutectic γ/γ' and carbides are formed in the interdendrite of the final solidification region in some cases. The micro-segregation phenomena formed in regions of dendrite core and interdendrite including eutectic γ/γ' and carbides were analyzed using OM, SEM/EDS and micro Vickers hardness. As a result of analysis, the lack of (Cr, W) and the accumulation of Ti were measured in the eutectic γ/γ', and the accumulation of (Cr, Mo) and the lack of Ti were measured in the interdendrite between dendrite and eutectic. Carbides formed in interdendritic region were composed of (Ti, W, Mo, C). The segregation applied to each microstructure is mainly due to the formation of γ' with Ni3(Al,Ti) composition. The Ni accumulation accompanied by Cr depletion, and the Ti accumulated in the eutectic region as a γ' forming elements. The Mo tends to diffuse out from the dendrite core to the interdendrite, and the W diffuse out from the interdendrite to the dendrite core. Therefore, the accumulation of Mo in the interdendrite and the deficiency of W occur in the eutectic region located in the interdendrite. Heat treatment makes the degree of the micro-segregation decrease due to the diffusion during solid solution. This study could be applied to the heat treatment technology for the micro-segregation control in cast Ni-based superalloys.

Metallurgical Study of Bronze Relics Excavated from Sanoesa Temple, Chongju (청주(淸州) 사뇌사지(思惱寺址) 출토 청동유물의 금속학적 조사)

  • Kwon, H.N.;Yu, H.S.;Ahn, B.C.
    • Journal of Conservation Science
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • In 1993, many bronze artifacts were excavated from the Sanoesa Temple(思惱寺), Chongju, Chungbuk. Twelve items were selected and chemically analyzed with AA Spectrometry and ICP-Atomic Emission Spectrometry. They were also observed under the optical microscopy and SEM. According to the results from chemical analysis, production method and use, these artifacts were classified into four groups: casting, wrought and welding products, and bells. Cast products, probably used for ritual, were alloy of 70% Cu, 10% Sn and 20% Pb. They showed ${\alpha}+{\beta}$ phase as a typical microstructure of casting. The ${\delta}$ phase was rarely observed due to the small amount of Sn. These artifacts included more lead than other alloys. They showed segregation like island-shape on the lead part. Wrought products used for daily too1s. were alloy of 80% Cu and 20% Sn. Since they were consist of ${\alpha}$ phase and martensite ${\beta}$ phase, it could be presumed that they were heat-treated. The production method could be identified from twinned grains in ${\alpha}$ phase. Lead was not included in because it had a bad effect to alloy. The bells were alloyed with 85% Cu, 10% Sn, 5% Pb or 90% Cu and 10% Sn. They show the dendrite structure because they were cast and alloyed with many tin. Weldinged were alloyed with 83% Cu, 12% Sn and 5% Pb. lt showed the fine dendrite structure because of fast cooling in air.

  • PDF

고출력 LED 패키지용 고밀도 W-20wt%Cu 나노복합체 제조에 관한 연구

  • Ryu, Seong-Su;Park, Hae-Ryong;Kim, Hyeong-Tae;Lee, Byeong-Ho;Lee, Hyeok;Kim, Jin-U;Kim, Yeong-Do
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.26.2-26.2
    • /
    • 2010
  • 최근에는 차세대 조명용 후보광원인 고출력 백색 LED를 개발하기 위한 경쟁이 치열하며, 이를 위해 업체가 고심하고 있는 가장 큰 문제 중의 하나가 칩에서 발생하는 열을 어떻게 관리하는가 하는 방열의 문제이다. 따라서, LED의 가장 큰 특징인 장수명을 손해보지 않기 위해서는 칩에서 발생되고 있는 열을 외부에 확산시키기 위한 기술 개발이 필수적이다. 다양한 방열소재 중 W-Cu 복합재는 W의 낮은 열팽창계수와 Cu의 높은 열전도도로 인해 방열소재로써 유망한 소재로 주목받고 있으나, 우수한 열적 특성을 발현하기 위해서는 고치밀화를 갖는 W-Cu 복합재 제조가 우선적으로 필요하다. W-Cu 복합체는 일반적으로 액상소결법을 통해 균일한 미세조직을 얻을 수 있으나, 열팽창계수를 낮추기 위해 Cu 함량이 적어지게 되면 치밀화가 어려우며 이를 해결하기 위해 나노입자를 갖는 분말을 이용하고자 하는 연구가 많이 진행되고 있다. 본 연구에서는 W과 Cu 산화물을 이용하는 것이 구성성분끼리의 편석이 발생하지 않으며, 소결성도 우수하여 양산화에 가장 접근한 방법으로 알려져 있다. 그러나, 지금까지의 얻어진 W-Cu 복합체의 경우, 분말상태에서의 얻어진 나노입자가 승온시에 마이크로 크기로 과도한 입자성장이 일어나기 때문에 소결 후에도 나노크기를 유지하기 어려울 뿐만 아니라, 구성상끼리의 응집체가 형성된다. 본 연구에서는 액상소결후에 W 입자가 Cu 기지내에 균일하게 분산되는 동시에 나노크기의 입자를 가지는 고분산 W-Cu 소결체를 얻고자 하였다. 이를 위해 금속산화물 분말의 분쇄를 위해 효과적인 방법으로 알려진 습식상태에서의 고에너지 볼밀링을 통하여 혼합된 텅스텐과 구리 산화물 분말의 수소환원공정을 통해 얻어진 100nm 이하의 입자를 가지는 W-20wt%Cu 나노복합분말을 출발분말로 사용하였다. W-20wt%Cu 나노복합분말의 성형체를 $1050^{\circ}C-1250^{\circ}C$의 온도범위에서 소결거동을 조사하였다. 그 결과, $1100^{\circ}C$ 온도에서 이론밀도에 가까운 소결밀도를 나타내었으며, 이는 기존에 비해 $100^{\circ}C$ 정도 치밀화 온도를 낮추는 결과이다. 소결체의 미세구조 관찰결과, 소결 후 약 200nm의 텅스텐 입자가 Cu내에 균일하게 분산되어 있었다. 제조된 W-Cu 시편에 대해서는 LED 응용성을 조사하기 위해 열전도도와 열팽창계수 등을 평가하였다.

  • PDF

The Effect of $\textrm{WO}_3$, on the Microstructure and Electrical Properties of ZNR (ZNR의 미세구조 및 전기적 특성에 $\textrm{WO}_3$가 미치는 영향)

  • Nam, Chun-U;Jeong, Sun-Cheol;Park, Chun-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.753-759
    • /
    • 1999
  • The microstructure and electrical properties of ZNR that W $O_3$ is added in the range 0.5~4.0mol%, were investigated. The major part of W $O_3$ were segregated at the nodal point and W-rich phase was formed. Three crystalline phases, such as W-rich phase (W $O_3$), Bi-rich phase (B $i_2$W $O_{6}$ ), and spinel phase (Z $n_{2.33}$S $b_{0.67}$ $O_4$) were confirmed to be co-existed at the nodal point The average grain size increased in the range 15.5~29.9$\mu\textrm{m}$ with increasing W $O_3$ additive content. Consequently. W $O_3$ acted as a promotion additive of grain growth. As the W $O_3$ additive content increases. the varistor voltage and the nonlinear exponent decreased in the range 186.82~35.87V/mm and 20.90~3.34, respectively, and the leakage current increased in the range of 22.39~83.01 uh. With increasing W $O_3$ additive content, the barrier height and the density of interface states decreased in the range 1.93~0.43eV and (4.38~1.22)$\times$10$^{12}$ $\textrm{cm}^2$, respectively. W $O_3$ acted as an acceptor additive due to the donor concentration increasing in the range (1.06~0.38)$\times$10$^{18}$ /㎤with increasing W $O_3$ additive content.t.t.

  • PDF

Axial Pressing Method Using Pulse Magnetizing Field for the Preparation of Nd-Ee-B Sintered Magnets (펄스자장을 이용한 고이방화 Nd-Fe-B자석의 종축자장성형방법)

  • Kim, Dong-Hwan;Kang, Byung-Kil;Jang, Dong-Youl;Kim, Andrew S.;Kim, Sang-Myun;Jang, T.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.182-186
    • /
    • 2003
  • A new axial pressing method using pulse magnetizing field was studied to improve the remanence of Nd-Fe-B sintered magnets. In order to make near-net shape green compacts of butterfly, disk, or coin magnets, conventional axial-type pressing has been normally used. However, compared to the transverse-type pressing, it is not possible to obtain higher remanence by this method because the magnetic alignment of powder begins to deteriorate when the density of green compacts increases over a critical value. On the other hand, we found that an axial pressing under pulse magnetizing field was very effective to increase the degree of magnetic alignment of powder, yielding remanences even higher than those obtained by the transverse pressing. In this study, it was revealed that appropriate tapping density and how to apply pulse magnetic held were important to improve the grain alignment and thus remanence of Nd-Fe-B sintered magnet.

Restoration and Scientific Analysis of Casting Bronze Type in Joseon Dynasty (조선왕실 주조 청동활자의 복원과 과학적 분석)

  • Yun, Yong-Hyun;Cho, Nam-Chul;Lee, Seung-Cheol
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.207-217
    • /
    • 2009
  • After replicating 10 bronze types such as Gyemija, Gyeongjaja, Eulhaeja, etc. before the Imjin war, we studied the change of microstructure from each casting process, method, and alloy ratio by Gyechukja replicated from "Donggukyeojiseungnam". We selected the average of compositions of Eulhaeja in the National Museum of Korea as the standard(Cu 86.7%, Sn: 9.7%, Pb: 2.3%) of bronze types, so we decided on the alloy's composition of Cu 87%, Sn 15%, Pb 8% added to 5% Sn and Pb contents because of evaporating the Sn and the Pb. Before replicating major metal types, we made master-alloy first, melting it again, and then replicated metal types. The composition of the 1'st replicated Gyechukja showed the range of Cu 85.81~87.63%, Sn 9.27~10.51%, Pb 3.05~3.19%. The 2'nd replicated Gyechukja made using the branch metal left after casting the 1st replica. The 2nd replicated Gyechukja showed the composition range of Cu 87.21~88.09%, Sn 9.06~9.36%, Pb 2.80~3.05%. This result decreases a little contents of Sn and Pb as compared with metal types of the 1st replica. However, it's almost the same as the Eulhaeja's average composition ratio in the National Museum of Korea. As a result of observing the microstructure of restored Gyechukja, it showed the dendrite structure of the typical casting structure and the segregation of Pb. There is no big difference of microstructure between the 1st and the 2nd restored metal types, even though the 2nd restored types partially decreases the eutectoid region in comparison with the 1st types. The systematic and scientific restoration experiment of metal types using Joseon period will be showed the casting method and alloy ratio, and this will be of great help to the study of restoration metal types in the future.

  • PDF

Effects of Surface Finishes on the Low Cycle Fatigue Characteristics of Sn-based Pb-free Solder Joints (금속패드가 Sn계 무연솔더의 저주기 피로저항성에 미치는 영향)

  • Lee, Kyu-O;Yoo, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2003
  • Surface finishes of PCB laminates are important in the solder joint reliability of flip chip package because the types and thicknesses of intermetallic compound(IMC), and compositions and hardness of solders are affected by them. In this study, effects of surface finishes of PCB on the low cycle fatigue resistance of Sn-based lead-free solders; Sn-3.5Ag, Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag-XBi(X=2.5, 7.5) and Sn-0.7Cu were investigated for the Cu and Au/Ni surface finish treatments. Displacement controlled room temperature lap shear fatigue tests showed that fatigue resistance of Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag and Sn-0.7Cu alloys were more or less the same each other but much better than that of Bi containing alloys regardless of the surface finish layer used. In general, solder joints on the Au/Ni finish showed better fatigue resistance than those on the Cu finish. Cross-sectional fractography revealed microcracks nucleation inside of the interfacial IMC near the solder mask edge, more frequently on the Cu than the Au/Ni surface finish. Macro cracks followed the solder/IMC interface in the Bi containing alloys, while they propagated in the solder matrix in other alloys. It was ascribed to the Bi segregation at the solder/IMC interface and the solid solution hardening effect of Bi in the $\beta-Sn$ matrix.

  • PDF

Preparation and characterization of La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ electrolyte using glycine-nitrate process (Glycine nitrate process로 합성된 La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ 전해질의 제조 및 특성평가)

  • Ok, Kyung-Min;Kim, Kyeong-Lok;Kim, Tae-Wan;Kim, Dong-Hyun;Park, Hee-Dae;Sung, Youl-Moon;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Conductivity of LSGMC materials were affected by secondary phase segregation, composition and synthetic route. $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$ (LSGMC) powders were prepared using the glycine nitrate process to produce high surface area and compositionally homogeneous powders. The powders were synthesized with different 0.5, 1, 1.5, 2, 2.5 of glycine/cation molar ratios. A single perovskite phase from the synthesized powders was characterized with X-ray diffraction patterns. The obtained sintered pellets showed the dense grain microstructure. In case of 1.5 molar ratio, its density was higher than the others. The electrical conductivity measured at $800^{\circ}C$ was observed to be 0.131 $Scm^{-1}$. In addition, the linear thermal expansion behavior was indicated between $25^{\circ}C$ and $800^{\circ}C$.

Raman Spectroscopic Study on Corrosion Layers of Archaeological Bronzes (라만분광분석을 통한 출토 청동유물의 부식층 연구)

  • Kim, Beom jun;Chung, Kwang Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.4
    • /
    • pp.4-23
    • /
    • 2015
  • Buried bronze objects are naturally corroded by their surrounding environment, which results in producing corrosion layers containing a number of constituents. Corrosion layers in stable condition protect the objects from the environment and also could provide information in terms of the objects. Characteristic and mechanism of the corrosion layers is likely to be valuable information for the conservation treatment. Many research have been conducted to figure out the formation and characteristic of the corrosion layers, but the more research should be conducted with various approach and analytical methods. Raman spectroscopy is one of the analytical methods to identify microcrystal as a compound while other analytical methods are used to identify element. Therefore, the aim of this research is to identify the characteristic of corrosion layers of both excavated bronze objects through the raman spectroscopy. Two analytical methods, which are raman spectroscopy and SEM~EDS, were used to analyse four excavated bronze bowls. In the case of bronze bowls, malachite was found from the exterior corrosion layer and albite, quartz, and microcline, which are minerals, were also found. Cuprite was detected from the interior corrosion layers illustrating slightly different spectrum due to the combined compound. Lead segregation shows the form of PbO, $PbSO_4$ and $PbCO_3$ or it replaced as cuprite. In this study, small number of samples were analysed. This research is likely to be useful information to figure out not only the characteristic of the corrosion layers but also the authenticity of the artifacts if relevant research will be conducted. Therefore, further comprehensive researches on the various archaeological objects and corrosion environment condition are required in the future.