• Title/Summary/Keyword: 미세 조직

Search Result 3,215, Processing Time 0.031 seconds

Effects of Hot Isostatic Pressing on the Microstructure and High-Temperature Fatigue Life of the Ni-base Superalloy IN738LC (IN738LC 초내열합금에서 미세조직과 고온 피로수명에 미치는 고온등압압축(HIP) 공정의 영향)

  • Choi, Cheol;Kim, Doo-Soo;Lee, Young-Chan;Park, Young-Kyu;Kim, Gil-Moo;Kim, Jae-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.128-137
    • /
    • 2000
  • A study has been made to investigate the effects of hot isostatic pressing(HIPing) on the microstructure and high temperature fatigue lives of the IN738LC, Ni-base superalloy used in turbine blades, with emphasis on the elimination of casting microporosity and fatigue damage through HIP treatments. Microstructure was observed using OM, SEM and the fatigue life was investigated with rotate bending fatigue tester. The results show that the fatigue lives of properly HIP-processed specimens could be extended be extended by a factor of about sixty. In contrast, no comparable life improvement was achieved with heat treatment only. The repetitive HIP treatment was shown to be very effective as a means of rejuvenating the fatigue life of intentionally fatigue-damaged IN738LC by restoration of the initial alloy microstructure and additional removal of fine casting defects which remained in the HIP-processed material.

  • PDF

Microstructure of Aluminum Can Body Alloys produced by Recycled UBC and Virgin Aluminum (폐알루미늄캔과 신지금으로 제조된 캔용 알루미늄 합금의 미세조직)

  • Lim Cha-Yang;Kang Seuk-Bong
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2002
  • Microstructure of aluminum alloys produced by the different mixing ratio of secondary ingot made by aluminum UBC (used beverage can) and virgin aluminum was investigated. The phase transitions of casted ingot by heat treatment were also studied. The alloys were melted at the electric resistance furnace, then casted using ceramic filter. Homogenization heat treatment was conducted at $615^{\circ}C$ for 10hrs to control cast microstructure. There were several kinds of phases, in as-cast condition, such as $\alpha$($Al_{12}$ $((Fe,Mn)_3$Si), $\beta$($Al_{6}$ (Fe,Mn)), and fine $Mg_2$Si phases. Especially, the amount of $\beta$-phase which was harmful in forming process was large. The $\beta$-Phase formed was transformed to u-phase by heat treatment. The fine $Mg_2$Si in the aluminum matix was also transformed to $\alpha$-phase by this heat treatment. Impurities filtered during casting process were identified as intermetallic compounds of Fe, Cu, Si.

Evaluation of Aging Degradation in 2.25Cr-1Mo Steel by Coercivity and Remanence Measurements - Microstructural Approach (보자력 및 잔류자화를 이용한 2.25Cr-1Mo강의 경년열화도 평가 - 미세조직적 접근)

  • Byeon, Jai-Won;Kwun, Sook-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.65-73
    • /
    • 2002
  • Artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540^{\circ}C$. Microstructural analysis (mean equivalent size, number of carbides per unit area) and measurement of mechanical properties(UTS, Vickers hardness) and magnetic properties(coercivity, remanence) were performed. By comparing these results, the relationship between magnetic properties and microstructural changes with artificial aging was clarified. The carbides were classified as rod, globular and acicular type in terms of morphology. The fine acicular carbides were found to diminish drastically in the initial stage of aging. The magnetic coercivity and remanence were observed to decrease rapidly in the initial about 920 hours of aging time and then decrease slowly afterwards. Linear correlations between the mechanical properties and magnetic properties such as correlations remanence were found.

Crystallinity Changes Heat Treatment of Coal Tar Pitch and Phenol Resin used as a Binder for Bulk Graphite Manufacturing (벌크흑연 제조를 위한 결합재로 이용되는 콜타르 핏치 및 페놀수지의 열처리에 의한 결정성 변화)

  • Lee, Sang-Min;Lee, Hyun-yong;Lee, Sang-Hye;Roh, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • The coal tar pitch and phenol resins are used as binders in artificial graphite manufacture, but there are differences in the initial carbon compound structure. According to the carbonization temperature, it can be expected that there are differences in thermal decomposition behavior, microstructure, and crystallinity change. These properties of the coal tar pitch and phenol resins were compared to each other. As the carbonization temperature of coal tar pitch and phenol resin increases, crystallinity tends to increase. The coal tar pitch went through the carbonization process through the liquid, and it was confirmed that the crystallinity changed rapidly in the temperature range of 500 and 600 ℃, where the microstructure changed quickly. These results confirmed the close correlation between microstructure and crystallinity.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

A Detection of the Microcalcification using fractal Dimension on Mammograms (Mammogram에 있어서 Fractal Dimension을 이용한 Microcalcification 검출)

  • 남상희;최준영;서지현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.128-132
    • /
    • 1998
  • 유방암의 조기진단을 위한 수단으로 Mammography의 x-선 film-screen이 많이 사용된다. 그러나, Mammogram에서 정상조직과 암조직 간의 대조도 차이가 크지 않으므로 판독은 그다지 쉽지가 않다. 이러한 문제들의 해결을 위하여 mammogram의 디지털 화상처리 및 분석 연구가 활발히 진행 중이다. 본 연구에서는 진단방사선의들이 필름을 판독할 때 시각적인 인지도를 높여주고, 보다나은 의료지원 서비스의 제공을 위한 목적으로, 유방암의 조기진단의 중요한 요소인 미세석회의 검출을 위한 방법으로서 fractal dimension을 구하여 종괴와 미세석회, 미세석회에 대한 차이를 분석하고자 하였다. 각각의 실험군에 대하여 30명씩 60명의 데이터를 0.1mm resolution의 12bit gray scale로 획득하여 사용하였는데, 일차로 화상의 대조도 개선을 위하여 처리를 하였고 화상의 분석으로 강조된 화상의 불규칙정도 및 거친 정도를 나타내기 위하여 fractal dimension을 계산하였다. 원화상에서 가시적으로 분간하기 힘들었던 병변을 화상처리를 통해 강조된 화상에서는 쉽게 그 특징을 볼 수 있었다. 실제로 mammogram을 진단할 때, 강조화상으로 미세석회와 같은 조기진단의 가시적인 판단을 도모할 수 있으며, 미세석회의 진단에서 fractal dimension값을 이용하여 병변 특성의 하나로서 사용할 수 있을 것으로 판단된다.

  • PDF

Effects of interfacial Microstructure on XLPE Breakdown Strength (가교 폴리 에틸렌의 미세조직 변화가 절연파괴 특성에 미치는 영향)

  • Cho, Dae-Hee;Shim, Sung-Ik;Nam, Jin-Ho;Yeon, Bok-Hee;Lee, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1685-1687
    • /
    • 2004
  • 초고압 케이블의 절연물질로 널리 사용되고 있는 가교 폴리에틸렌의 전기적 특성은 라멜라 결정 조직의 밀도와 라멜라 조직의 성장방향과 밀접한 관련이 있는 것으로 알려지고 있다. 본 연구에서는 반도전 물질에 계면활성제를 첨가하고, 제조 온도를 제어하여 폴리에틸렌의 미세 조직을 변화시킴으로써, 라멜라 조직이 전기적 특성에 미치는 영향을 분석하였다. 전기적 특성은 절연파괴 전압을 측정하였고, TEM 분석을 통하여 폴리에틸렌의 모폴러지 분석을 하였으며, XRD 분석을 통하여 라멜라 조직의 밀도를 분석하였다.

  • PDF

Review of Micro/Nano Nondestructive Evaluation Technique (I): Surface and Subsurface Investigation (마이크로/나노 비파괴평가 기술(I): 표면 및 표면직하 검사)

  • Kim, Chung-Seok;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.198-209
    • /
    • 2012
  • The present paper reviews the widely used surface microstructural investigation technique and micro/nano nondestructive evaluation(NDE) technique which is able to evaluate the surface and subsurface. In general, the micro/nano defects and microstructural state of surface have great influence on the mechanical, physical, and chemical properties of bulk materials. The investigation technique of surface microstructure is possible to evaluate the defects and microstructural state with high reliability. The various applications and developments of each inspection technique have been introduced. Consequently, it is thought that the technique developments and applications of micro/nano NDE in nondestructive industries are extensively possible hereafter.

Epidermal Features of the Nelumbo nucifera Tissues and Lotus Effect (연꽃식물 조직의 표피 특성과 연잎효과)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • The cell surface sculpture of the plant epidermis has received great interest recently. It has also been an active area of research, as the biological microstructures of the surface, such as papillae and waxes, exhibit several unique properties, including self-cleaning character; namely the "Lotus effect" first described in the leaves of the lotus, Nelumbo nucifera. The Lotus effect is the phenomenon in which the super-hydrophobic and water-repellent nature of lotus leaves allow water drops to run off easily on the surface in a rolling and sliding motion thereby facilitating the removal of dirt particles. It is well-known that surface roughness on the micro- and nanoscale is a primary characteristic allowing for the Lotus effect. This effect is common among plants and is of great technological importance, since it can be applied industrially in numerous fields. In the present study, Nelumbo nucifera leaf and stem epidermal surfaces have been examined with a focus on the features of papillae and wax crystalloids. Both young and mature Nelumbo nucifera leaf epidermis demonstrated the Lotus effect on their entire epidermal surface. The central area of the upper epidermis, in particular, formed extremely papillose surfaces, with an additional wax layer, enabling greater water repellency. Despite the presence of wax crystalloids, epidermal surfaces of the lower leaf and stem lacking papillae, were much more easily wetted.