• Title/Summary/Keyword: 미세 납

Search Result 92, Processing Time 0.029 seconds

Protective Effects of Activated Charcoal on the Acute Damages of Kidney of Mouse by Lead (급성 납 중독된 생쥐의 신장에서 활성탄의 보호효과)

  • Cheong, Min-Ju;Roh, Young-Bok
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.57-72
    • /
    • 2006
  • A protective effect of activated charcoal against the acute lead poisoning of kidney was studied in mice. Mice approximately 30 gm in weight were grouped into the control, lead acetate-treated. and the activated charcoal-treated after lead acetate groups. Lead acetate (60mg/kg) and activated charcoal (40mg/kg) were delivered orally. Serum BUN and creatine were measured and ultrastructural alteration of renal tissues were examined by electron microscopy. Activated charcoal were decreased the increase of serum BUN and Creatinine level induced by lead. Lead acetate-treated renal tissues were characterized by the loss of microvilli in the renal tubule tells, irregular nucleus, enlarged and reduced number of mitochodria, enlarged rough endoplasmic reticulum, loss of ribosomes. Cells treated with activated charcoal were similar to those of the control group. In conclusion, activated charcoal may protect the lead-induced toxicity on kidney.

Study on Manufacturing Technique and Lead Provenance of Bronze Bodhisattva from Pangyo-dong Sites in Seongnam (성남 판교 출토 청동보살상의 제작기법 및 납 원료의 산지추정)

  • Choi, Mi Ra;Cho, Nam Chul;Kim, Dong Min;Yun, Sun Young
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.231-241
    • /
    • 2013
  • Analysis of the bronze bodhisattva from Pangyo-dong sites in Seongnam by computed tomography, ICP-AES, metallurgical microscope and SEM-EDS had to know manufacturing technique. And the origin of the raw material, was investigated using TIMS. Results with computed tomography, two bronze bodhisattva produced by lost-wax casting technique with hollow inside and could see the core of the inside. Result of component analysis and microstructure observation, material is alloy of copper-tin-lead and made by casting without artificial treatment. According to lead isotope ratio analysis result of bronze bodhisattva could be made into galena of the Gyeonggi massif in Korea South.

Scientific Study for Seungja Chongtong in the Central Museum of Kyunghee University (경희대학교 중앙박물관 소장 승자총통의 과학적 연구)

  • Oh, Il Whan;Jeong, Youn Joong;Cho, Nam Chul;Kang, Hyung Tae
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Seungja Chongtong is a small korean tubular arm that made by particular arm-making way imitating a chinese arm. This study organizes scientific analysis results with results of inscriptions reading of Seungja Chongtong in the Central museum of Kyunghee University. Three of Seungja Chongtongs are made with Cu-Sn-Pb ternary alloy which is not much differ in contents and the results of microstructure analysis of Seungja Chongtong 1 which could investigate a microstructure among the Chongtongs were found out that Seungja Chongtong is made by general casting, with no evidences of an additional heat-treatment and tempering. Furthermore, in results of lead isotope ratio analysis to find out a source of lead using during the production of Seungja Chongtong, It seems that Seungja Chongtong is made with a lead ore from northern Gyeongsangbuk-do Province and southern Gangwon-do Province called Korea southern zone 2 area.

Chemical Composition and Lead Isotope Ratio of Poong-Tag(Wind Bell) from Winggyeong Site, Cyeongju (경주 왕경지구 금동풍탁(金銅風鐸)의 성분조성과 납동위원소비)

  • Chung, Young-Dong;Kang, Hyung-Tae;Huh, Il-Kwon;Cho, Nam-Chul
    • Journal of Conservation Science
    • /
    • v.19
    • /
    • pp.67-72
    • /
    • 2006
  • The chemical compositions and lead isotope ratio of Poong-Tag(wind bell) bell excavated from Wanggyeong site, Gyeongju have analyzed by ICP and TIMS. The analysis result of chemical composition of Poong-Tag shows that it consists of 92:4 ratio of Cu:Sn. Other 8 minor elements(Pb, Zn, Fe, Ag, Ni, As, Sb and Co) show the concentration of below 0.2% respectively. This result means that Poong-Tag have made using highly purified Cu and Sn ore. For the study of provenance of raw material with the lead isotope ratio, the origin of the raw material of Poong-Tag can not be presumed owing to beyond the scope. The observation result of microstructure of Poong-Tag show the dendrite structure made through casting process. The chemical composition, microstructure, and lead isotope ratio of Poong-Tag excavated from Wanggyeong site, Gyeongju can be used as fundamental data to compare with other Poong-Tag of different regions and periods.

  • PDF

Technological Diversities Observed in Bronze Objects of the Late Goryo Period - Case Study on the Bronze Bowls Excavated from the Burial Complex at Deobu-gol in Goyang - (고려 말 청동용기에 적용된 제작기술의 다양성 연구 - 고양 더부골 고분군 출토 청동용기를 중심으로 -)

  • Jeon, Ik Hwan;Lee, Jae Sung;Park, Jang Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.208-227
    • /
    • 2013
  • Twenty-seven bronze bowls excavated from the Goryo burial complex at Deobu-gol were examined for their microstructure and chemical composition to characterize the bronze technology practiced by commoners at the time. Results showed that the objects examined can be classified into four groups: 1) objects forged out of Cu-near 22%Sn alloys and then quenched; 2) objects cast from Cu-below 10% Sn alloys containing lead; 3) objects cast from Cu-10%~20% Sn alloys containing lead and then quenched; 4) objects forged out of Cu-10~20% Sn alloys containing lead and then quenched. This study revealed that the fabrication technique as determined by alloy compositions plays an important role in bronze technology. The use of lead was clearly associated with the selection of quenching temperatures, the character of inclusions and the color characteristics of bronze surfaces. It was found that the objects containing lead were quenched at temperatures of $520^{\circ}{\sim}586^{\circ}C$ while those without lead were quenched at the range of $586^{\circ}{\sim}799^{\circ}C$. The presence of selenium in impurity inclusions was detected only in alloys containing lead, suggesting that the raw materials, Cu and Sn, used in making the lead-free alloys for the first group were carefully selected from those smelted using ores without lead contamination. Furthermore, the addition of lead was found to have significant effects on the color characteristics of the surface of bronze alloys when they are subjected to corrosion during interment. In leaded alloys, corrosion turns the surface light green or dark green while in unleaded alloys, corrosion turns the surface dark brown or black. It was found that in fabrication, the wall thickness of the bronze bowls varies depending on the application of quenching; most of the quenched objects have walls 1mm thick or below while those without quenching have walls 1mm thick or above. Fabrication techniques in bronze making usually reflect social environments of a community. It is likely that in the late Goryo period, experiencing lack of skilled bronze workers, the increased demand for bronze was met in two ways; by the use of chief lead instead of expensive tin and by the use of casting suitable for mass production. The above results show that the Goryo bronze workers tried to overcome such a resource-limited environment through technological innovations as apparent in the use of varying fabrication techniques for different alloys. Recently, numerous bronze objects are excavated and available for investigation. This study shows that with the use of proper analytical techniques they can serve as a valuable source of information required for the characterization of the associated technology as well as the social environment leading to the establishment of such technology.

Bronze Technology Observed in a Bronze Dagger Excavated from Bongili in Yangboongmyon, Gyeongju (경주 양북면 봉길리 유적출토 청동검의 제작기술에 관한 연구)

  • Ju, Jin-Ok;Park, Jang-Sik
    • Journal of Conservation Science
    • /
    • v.26 no.2
    • /
    • pp.143-148
    • /
    • 2010
  • A bronze dagger excavated from the historical site at Bongili in Gyeongju was examined for its microstructure and chemical compositions. The results show that it was forged out of the Cu-10 weight % Sn alloy having no lead. The application of forging in fabrication and the use of an unleaded alloy distinguish this artifact from other bronze daggers that have been reported in Korea, the majority of which were cast from leaded Cu-Sn alloys. This dagger is a rare and valuable archaeological material suggesting a unique bronze technology practiced in ancient Gyeongju area.

용해 납 흐름 배터리용 여러 카본 전극의 에너지 효율 특성 비교

  • Min, Hyeong-Seop;Yang, Min-Gyu;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.59.1-59.1
    • /
    • 2009
  • 레독스 흐름 배터리 (Redox Flow Battery)는 외부의 탱크 등에 저장해 둔 활성물질(이온 가수가 변화는 금속) 의 용액을 펌프로 전해셀에 공급하여 충전 방전하는 배터리로 신재생 에너지인 풍력과 태양광 발전, 야간의 잉여 전력 저장 등 대용량 전력 저장 장치로 관심이 높아지고 있다. 대표적인 레독스 흐름 배터리로 알려진 바나듐 레독스 흐름 배터리는 이온 교환막 사용으로 인하여 전기전도도, 기계적 강도, 투과도 및 전해질 내의 화학적 안정성 등 여러 가지 문제점과 함께 비용 문제점을 야기한다. 하지만 새로운 용해 납 레독스 흐름 배터리는 이온 교환막을 사용하지 않아 바나듐 레독스 흐름 배터리의 문제점 및 시설비가 절약되는 장점이 있어 새로이 연구되지고 있다. 본 연구는 레독스 흐름 배터리에 주로 이용되는 카본 전극재료의 따라 형성되는 Pb, $PbO_2$ 박막의 미세 구조를 및 에너지 효율 특성을 분석하였다. 실험은 half-cell로 이루어졌으며 작업전극은 Carbon felt, Ordered Graphite, Disordered Graphite, Glassy Carbon 등을 여러 카본 재료를 사용하였고, 상대전극은 Pt, 기준전극으로 Ag/AgCl를 사용하여 Cyclic Voltammetry특성과 충방전 특성을 연구하였다. 전해질은 Lead Carbonate ($PbCO_3$)+Methanesulfonic acid ($CH_3SO_3H$) 들어간 수용성 전해질을 교반을 통해 이용하였다. 여러 carbon 전극재료와 생성된 Pb, $PbO_2$ 막의 표면구조, 미세구조, 상들의 변화는 XRD, SEM, EDX, Raman등을 통하여 분석하였으며, 전기화학 공정의 변수와 전극에 따른 에너지 효율특성에 대하여 고찰해 보았다.

  • PDF

Provenance and Metallurgical Study on Bronze Mirrors Excavated from Mireuksaji Temple Site, Iksan (익산 미륵사지 출토 동경의 금속학적 연구 및 산지 추정)

  • Huh, Il-Kwon;Cho, Nam-Chul;Kang, Hyung-Tae
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.23-30
    • /
    • 2007
  • By analyzing the chemical compositions of bronze mirror presumably excavated from Mireuksaji temple site, Iksan, we have surveyed what alloy composition was used in casting the mirror, and also tried to estimate the manufacturing technique of the bronze mirror, through the observation of microstructure, as well as which region$^{\circ}{\emptyset}s$ galena the lead used in the mirror belonged to, by analyzing the ratio of the lead isotope. The content analysis result of bronze mirrors shows that it consists of 68.8 to 73.3wt% of Cu, 21.6 to 24.9wt% of Sn. In particular, the content of Pb of Mireuk 2 and 3 Samples are higher than those of Miruk 4. The observation result of microstructure demonstrates that Mireuk 2 and 3 consist of ${\alpha}$ and ${\alpha}+{\delta}$ eutectoide phase made through casting process. But Mireuk 4 show other process employed, such as quenching though martensite structure. In the analysis result of provenance though the lead isotope ratio, the origin of the used in bronze millers excavated from Mireuksaji temple site is presumed to be from galenas of Japen, like this those, the chemical competition, microstructure, and lead isotope ratio of bronze mirrors excavated from Mireuksaji can be utilized at fundamental data to compare mutually with other remains.

  • PDF

Joining properties and thermal cycling reliability of the Si die-attached joint with Zn-Sn-based high-temperature lead-free solders (Zn-Sn계 고온용 무연솔더를 이용한 Si다이접합부의 접합특성 및 열피로특성)

  • Kim, Seong-Jun;Kim, Keun-Soo;Suganuma, Katsuaki
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.72-72
    • /
    • 2009
  • 전자부품의 내부접속 및 파워반도체의 다이본딩과 같은 1차실장에는 고온환경에서의 사용과 2차실장에서의 재용융방지를 위해 높은 액상선온도 및 고상선온도를 필요로 하여, Pb-5wt%Sn, Pb-2.5wt%Ag로 대표되는 납성분 85%이상의 고온솔더가 널리 사용되고 있다. 생태계와 인체에 대한 납의 유해성이 보고된 이래, 무연솔더에 대한 연구가 활발히 진행되어 왔으나, Sn-Ag-Cu계로 대표되는 Sn계 합금으로 대체 중인 중온용 솔더와는 달리, 고온용 솔더에 대해서는 대체합금에 대한 연구가 미흡한 실정이다. 대체재의 부재로 인해 기존의 납을 다량함유한 솔더로 1차실장이 지속됨으로서, 2차실장의 무연화에도 불구하고 전자부품 및 기기의 재활용에 큰 어려움을 겪고 있다. 지금까지 고온용 무연솔더로서는 융점에 근거해 Au-(Sn, Ge, Si)계, Bi-Ag계, Zn-(Al, Sn)계의 극히 제한된 합금계만이 보고되어 왔다. Au계 솔더는 현재 플럭스를 사용하지 않는 광학, 디스플레이 분야 등 고부가가치 공정에 사용되고 있으나, 합금가격이 매우 비싸며 가공성이 나빠 대체재료로서는 적합하지 않다. Bi-Ag계 솔더 또한 취성합금으로 와이어 및 박판으로 가공하는데 어려움이 크며, 솔더로서 중요한 특성중 하나인 전기전도도 및 열전도도가 나쁜 편이다. 이에 비해, Zn계 합금은 비교적 낮은 합금가격, 적절한 가공성과 뛰어난 인장강도, 우수한 전기전도도 및 열전도도를 지녀, 고온용솔더 대체재료의 유력한 후보로 생각된다.이전 연구에서, 필자의 연구그룹은 Zn-Sn계 합금을 고온용 무연솔더로서 제안한 바 있다. Zn-Sn계 합금은 충분히 높은 융점과 함께, 금속간화합물이 없는 미세조직, 우수한 기계적 특성, 높은 전기전도도 및 열전도도 등의 장점을 나타내었다. 본 연구에서는 기초합금특성상 고온솔더로서 다양한 장점을 지닌 Zn-30wt%Sn합금을 고온용 솔더의 대표적인 적용의 하나인 다이본딩에 적용하여, 접합부의 강도 및 미세조직, 열피로 신뢰성에 대해 분석을 함으로서 실제 공정에의 적용가능성에 대해 검토하였다. Zn-30wt%Sn을 이용해 Au/TiN(Titanium nitride) 코팅한 Si다이를 AlN-DBC(aluminum nitride-direct bonded copper)기판에 접합한 결과, 양측에 완전히 젖은 기공이 없는 양호한 다이접합부를 얻었으며, 솔더내부에는 금속간화합물을 형성하지 않았다. Si다이와의 계면에는 TiN만이 존재하였으며, Cu와의 계면에는 Cu로부터 $Cu_5Zn_8,\;CuZn_5$의 반응층을 형성하였다. 온도사이클시험을 통한 열피로특성평가에서, Zn-30wt%Sn를 이용한 다이접합부는 1500사이클 지점에서 Cu와 Cu-Zn금속간화합물의 사이에서 피로균열이 형성되며, 접합강도가 크게 감소하였다. 열피로특성 향상을 위해 Cu표면에 TiN코팅을 하여 Zn-30wt%Sn 솔더로 다이접합한 결과, Si다이와 기판 양측에 TiN만으로 구성된 계면을 형성하였으며, TEM관찰을 통해 Zn-30wt%Sn과 극히 미세한 접합계면이 형성하고 있음을 확인하였다. Zn-wt%30Sn솔더와 TiN층의 병용으로 2000사이클까지 미세조직의 변화 및 강도저하가 없는 극히 안정된 고신뢰성의 다이접합부를 얻을 수가 있었다.

  • PDF

Soil Washing Coupled with the Magnetic Separation to Remediate the Soil Contaminated with Metal Wastes and TPH (자력선별과 토양세척법을 연계하여 금속폐기물과 TPH로 복합 오염된 토양 동시 정화)

  • Han, Yikyeong;Lee, Minhee;Wang, Sookyun;Choi, Wonwoo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Batch experiments for the soil washing coupled with the magnetic separation process were performed to remediate the soil contaminated with metal and oil wastes. The soil was seriously contaminated by Zn and TPH (total petroleum hydrocarbon), of which concentrations were 1743.3 mg/kg and 3558.9 mg/kg, respectively, and initial concentrations of Zn, Pb, Cu, and TPH were higher than the 2nd SPWL (soil pollution warning limit: remediation goal). The soil washing with acidic solution was performed to remove heavy metals from the soil, but Pb and Zn concentration of the soil maintained higher than the 2nd SWPL even after the soil washing with acidic solution. The 2nd soil washing was repeated to increase the Pb and Zn removal efficiency and the Zn and Pb removal efficiencies additionally increased by only 8 % and 5 %, respectively, by the 2nd soil washing (> 2nd SPWL). The small particle separation from the soil was conducted to decrease the initial concentration of heavy metals and to increase the washing effectiveness before the soil washing and 4.1 % of the soil were separated as small particles (< 0.075 mm in diameter). The small particle separation lowered down Zn and Pb concentrations of soil to 1256.3 mg/kg (27.9 % decrease) and 325.8 mg/kg (56.3 % decrease). However, the Zn concentration of soil without small particles still was higher than the 2nd SPWL even after the soil washing, suggesting that the additional process is necessary to lower Zn concentration to below the 2nd SPWL after the treatment process. As an alternative process, the magnetic separation process was performed for the soil and 16.4 % of soil mass were removed, because the soil contamination was originated from unreasonable dumping of metal wastes. The Zn and Pb concentrations of soil were lowered down to 637.2 mg/kg (63.4 % decrease) and 139.6 mg/kg (81.5 % decrease) by the magnetic separation, which were much higher than the removal efficiency of the soil washing and the particle separation. The 1st soil washing after the magnetic separation lowered concentration of both TPH and heavy metals to below 2nd SPWL, suggesting that the soil washing conjugated with the magnetic separation can be applied for the heavy metal and TPH contaminated soil including high content of metal wastes.