• Title/Summary/Keyword: 미세플럭

Search Result 6, Processing Time 0.02 seconds

The Characterization of Floc Formation Under Various Pre-coagulation Conditions (응집-막분리 공정 적용시 전처리 응집조건에 따른 용존성 유기물 상(相)변화 특성)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1139-1145
    • /
    • 2008
  • The objectives of this research are to investigate the mechanism of coagulation affecting UF and find out the optimum conditions of the combined of coagulation with UF membrane filtration for NOM removal. During the mixing period, substantial changes in particle size distribution occurred under rapid and slow mixing condition due to the simultaneous formation of microflocs and NOM precipitates. Therefore, combined pretreatment using coagulation (both rapid mixing and slow mixing) improved dissolved removal efficiency. Also, for combined coagulation to membrane process, flux reduction rate showed lower than only UF process. The rate of flux decline for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Applying coagulation process before membrane filtration showed not only reducing membrane fouling, but also improving the removal of dissolved organic materials that might otherwise not be removed by the membrane.

The Analysis of Coagulation Effect in the Water Treatment Plant by Input of Micro-Particles having Different Specific Gravity (비중이 다른 미세입자의 투입에 따른 정수장의 응집 효과 분석)

  • Kwon, Young-Bin;Choi, Gye-Woon;Lee, Joo-Kyoung;Park, Hyo-Seon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.673-677
    • /
    • 2009
  • 현재 상수시설의 경우 갈수록 악화되는 수질과 정수장의 유지관리 인원 상주의 어려움, 기존의 응집, 침전, 여과 정수처리 시스템의 처리성능 증대에 따른 한계성에 직면한 상황이다. 안정적으로 수질의 개선을 통한 장치의 컴팩트화, 유지관리가 편리한 고도정수 수질기준에 만족하는 정수처리 시스템이 필요하다. 본 연구에서는 기존의 정수처리 시설인 혼화지에 응집제와 함께 다양한 비중을 가지고 있는 모래입자를 투입하여 응집제와 모래의 결합에 따른 탁도 제거효율과 슬러지의 양을 비교하였으며, 침전지내에 정류벽을 설치하여 침전지 초반에 가라앉을 수 있도록 유도하여 탁도 및 슬러지양을 비교하였다. 응집제만 투입한 경우보다 시료를 투입한 경우가 탁도제거율과 슬러지양이 상승하는 것을 볼 수 있으며 그중에서도 규사의 경우가 가장 많은 탁도제거율의 상승을 나타냈다. 또한 이중 정류벽을 설치하여 탁도 및 슬러지양을 측정한 결과 이중정류벽을 설치하지 않은 경우보다 탁도제거율 및 슬러지양 또한 높게 측정되었으며 슬러지의 양 또한 침전지 앞부분에 집중되는 것으로 나타났다. 이러한 경우 상기 플럭의 질량이 증가하기 때문에 처리속도를 높이고, 체류시간을 줄이고, 처리를 효율적으로 안정되게 수행하는 것이 가능하다. 본 연구결과를 바탕으로 정수시설의 설치에 있어 시료와 이중정류벽을 함께 사용할 경우 응집제의 절감 또는 침전지의 컴팩트화를 가져올 것으로 예상된다.

  • PDF

Characterization of Natural Organic matter by Rapid Mixing Condition (급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화)

  • Song, Yu-Kyung;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

A Study on the Coagulation of Wastewater Containing Fine Silica Particles with the Waste Slurry from Soda Ash Manufacturing Industries (소오다회 제조 공장의 폐슬러리를 이용한 미세 실리카 함유 폐수의 응집에 관한 연구)

  • Jun, Se Jin;Yim, Sung Sam
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1073-1078
    • /
    • 1999
  • The objectives of this study are to examine the applicability of waste slurry from soda ash manufacturing industries as a coagulant for the treatment of wastewater containing fine silica particles, and to reduce the cost of wastewater treatment containing silica. Acceptable water quality can be obtained with a little dosing of waste slurry by gelation before the coagulation process so it could be concluded that the waste slurry from soda ash can be used as a coagulant. Based on the results of experiments, the optimum pH of gelation for silica in wastewater was around five and the treatment process with the gelation of silica could reduce the chemical dosage and waste sludge after coagulation. Dewatering and settling characteristics of the floc after coagulation with the waste slurry are better than those of the floc after coagulation with the lime milk only.

  • PDF

Development and Lab-scale Plant Study of Coagulation Sedimentation Module using Cyclone (선회류를 이용한 응집침전모듈의 개발 및 실증 연구)

  • Moon, Jinyoung;Cho, Young-Gun;Song, Seung-Jun;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3336-3344
    • /
    • 2014
  • The purpose of this study is small scale coagulation module is developed and demonstrated through a lab-scale test. Recent as a sewage treatment rate increases, have heightened the interest in the necessity on the nonpoint source and developing a small processing unit has been increased. Coagulation sedimentation module in this study is additional growth of floc through swirling in the outside zone, reduction of microstructure floc number and the internal settling zone through vertical/level flow complex sedimentation method after the coagulation process precipitation method as an effective high separation efficiency can be divided was also assessed. Coagulation sedimentation module can increase the load factor was 4.4 times compared to conventional clarifier base on the same volume and surface area through vertical/level flow. In this study, this process was selected formation and maintenance of swirling and uniform flow distribution in the internal settling zone as an important design factor, to derive its FLUENT was used to characteristics of the flow model. Through the simulation of swirling, influent velocity, dimensions of external basin, hopper depth of bottom cone was determined and through analysis of velocity distribution, flow distribution detailed specifications are derived like as diameter and number of effluent hole. Lab-scale($120{\ell}/hr$) test results, influent of 300~800 NTU to less than 10 NTU without polymer feeding was able to operate in the 20minutes retention time(surface loading rate $37.3m^3/m^2$-day), and through analysis FLUENT the possibility of using design parameters were derived.

Treatment of Dredging Suspended Solids Using Chitosan Coagulant (Chitosan 응집제를 이용한 준설토 부유물질 처리)

  • Lee, Jun-Ho;Yang, Seung-Ho;Shin, Yiung-Kyewn;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.834-846
    • /
    • 2011
  • The objective of this study is to development of IDFIS system, that are consisted of hydrocyclone, rapid flocculation and inclined settler with chitosan coagulant. As the results of Jar test, a chitosan optimum dosage of 40 mg/L for river sediment, and 5 mg/L for tunnelling wastewater sediment, which these conditions leaves of residual turbidity of less than 5 NTU. Because of the effectiveness of chitosan in removing turbidity was independent on pH, the operation of IDFIS system would be simple. The synthesized turbidity was made with clay particles, river sediment, river suspended sediment, and tunnelling wastewater sediment. Results indicate that the mean overall removal efficiency of turbidity, SS, COD and TP were 98%, 99%, 85% and 95%, respectively. Chitosan is very efficient in removing turbidity in the entire turbidity range examined. IDFIS system would have possibility with compact design, because of the increase of floc size favours the floc settling speed and reduces the settling time.