• Title/Summary/Keyword: 미세아교세포

Search Result 48, Processing Time 0.025 seconds

Anti-inflammatory activity of jakyakgamcho-tang on Lipopolysaccharide-Stimulated BV-2 Microglia Cells (LPS로 유도된 미세아교세포에서 작약감초탕의 항염증 효과)

  • Mun, Yeun-Ja
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.83-88
    • /
    • 2022
  • Objectives : Jakyakgamcho-tang (JGT) has been traditionally used to treat muscular convulsion and pain in South Korea. According to recent studies, JGT has been reported to have anti-depression, anti-inflammation, anti-oxidative, anti-diabetics, anti-spasm and analgesic effects, but studies on its anti-neuroinflammatory and neuroprotective effect have not been deeply conducted. Thus, we investigated the anti-neuroinflammatory activity of JGT on lipopolysaccharide (LPS)-stimulated mouse microglia cells. Methods : To investigate the anti-neuroinflammatory effects of JGT on BV2 microglial cells, we examined the production of nitric oxide (NO) using griess assay, and mRNA expressions of pro-inflammatory cytokines such as interleukin (IL)-1𝛽, IL-6, and tumor necrosis factor (TNF)-𝛼 using real time RT-PCR. Furthermore, to determine the regulating mechanisms of JGT, we investigated the heme oxygenase (HO)-1 by real time RT-PCR. Results : Pre-treatment of JGT effectively decreased NO production in LPS-stimulated BV2 cells at concentrations without cytotoxicity. Additionally, JGT significantly suppressed the production of IL-1𝛽, IL-6, and TNF-𝛼 in LPS-stimulated BV2 cells. Furthermore, JGT activated the HO-1 expression, which is one of the immunomodulatory signaling molecules. And the abolishment of HO-1 by tin protoporphyrin IX (SnPP, the HO-1 inhibitor) reversed the anti- inflammatory activity of JGT in LPS-stimulated BV2 cells. Conclusions : Our results suggest that the JGT has anti-neuroinflammatory effect through the activation of HO-1 in LPS-stimulated BV2 cells. Thereby, JGT could expected to be used for the prevention and treatment of neurodegenerative disease related to neuroinflammation.

Inhibitory Effect of Hirudo on Neuroinflammation in LPS-stimulated Microglial Cells (Lipopolysccharides에 의해 활성화된 미세아교세포에서 수질(水蛭) 추출물의 NF-kB 억제를 통한 뇌신경염증 억제 효과)

  • Gunhyuk Park;Sungyu Yang;Byeong Cheol Moon;Sumin Noh;Hye-Sun Lim
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.259-266
    • /
    • 2023
  • Today, environmental pollution has been found to be one of the causes of various diseases, including brain and nervous system diseases. In particular, neurodegenerative diseases have been found to be caused by hyperactivation of immune system cells such as microglia. Preventive and therapeutic measures are needed to suppress them. Hirudo is known as a traditional herbal medicine, based on its multiple biological activities such as anti-eczema and anti-coagulation. In the present study, the anti-neuroinflammatory potential of hirudo extract was investigated in lipopolysccharide (LPS)-stimulated BV2 microglial cells and in mice. Hirudo extract significantly inhibited LPS-stimulated nitric oxide (NO) production and cytokine (IL-1Ra, KC, MCP-5, and RANTES) expression in a dose-dependent manner without causing cytotoxicity. Pretreatment with hirudo extract suppressed LPS-induced NF-κB p65 nuclear translocation. Moreover, hirudo extract reduced LPS-stimulated microglial acitivation and improved memory impairments. The results demonstrated that hirudo extract exerts anti-neuroinflammation activities, partly through inhibition of the NF-κB signaling pathway. These findings suggest that hirudo extract might have therapeutic potential with respect to neuroinflammation and neurodegenerative diseases.

Pretreatment with GPR88 Agonist Attenuates Postischemic Brain Injury in a Stroke Mouse Model (GPR88 효현제의 전처리에 의한 뇌졸중후 뇌손상 감소효과 연구)

  • Lee, Seo-Yeon;Park, Jung Hwa;Kim, Min Jae;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.939-946
    • /
    • 2020
  • Stroke is one of the leading causes of neurological disability worldwide and stroke patients exhibit a range of motor, cognitive, and psychiatric impairments. GPR88 is an orphan G protein-coupled receptor (GPCR) that is highly expressed in striatal medium spiny neurons; its deletion results in poor motor coordination and motor learning. There are currently no studies on the involvement of GPR88 in stroke or in post-stroke brain function recovery. In this study, we found a decrease in GPR88 protein and mRNA expression levels in an ischemic mouse model using Western blot and real-time PCR, respectively. In addition, we observed that, among the three types of cells derived from the brain (brain microvascular endothelial cells, BV2 microglial cells, and HT22 hippocampal neuronal cells), the expression of GPR88 was highest in HT22 neuronal cells, and that GPR88 expression was downregulated in HT22 cells under oxygen-glucose deprivation (OGD) conditions. Moreover, pretreatment with RTI- 13951-33 (10 mg/kg), a brain-penetrant GPR88 agonist, ameliorated brain injury following ischemia, as evidenced by improvements in infarct volume, vestibular-motor function, and neurological score. Collectively, our results suggest that GPR88 could be a potential drug target for the treatment of central nervous system (CNS) diseases, including ischemic stroke.

The neuroprotective effect of mycophenolic acid via anti-apoptosis in perinatal hypoxic-ischemic brain injury (주산기 저산소성 허혈성 뇌손상에서 항세포자멸사를 통한 mycophenolic acid의 신경보호 효과)

  • Kim, Ji Young;Yang, Seung Ho;Cha, Sun Hwa;Kim, Ji Yeun;Jang, Young Chae;Park, Kwan Kyu;Kim, Jin Kyung;Chung, Hai Lee;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.7
    • /
    • pp.686-693
    • /
    • 2007
  • Purpose : Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), is a potent inhibitor of inosine-monophosphate dehydrogenase (IMPDH), a new immunosuppressive drug used. It was reported that MPA protected neurons after excitotoxic injury, induced apoptosis in microglial cells. However, the effects of MPA on hypoxic-ischemic (HI) brain injury has not been yet evaluated. Therefore, we examined whether MPA could be neuroprotective in perinatal HI brain injury using Rice-Vannucci model (in vivo) and in rat brain cortical cell culture induced by hypoxia (in vitro). Methods : Cortical cells were cultured using a 18-day-pregnant Sprague-Dawley (SD) rats and incubated in 1% $O_2$ incubator for hypoxia. MPA ($10{\mu}g/mL$) before or after a HI insult was treated. Seven-day-old SD rat pups were subjected to left carotid occlusion followed by 2 hours of hypoxic exposure (8% $O_2$). MPA (10 mg/kg) before or after a HI insult were administrated intraperitoneally. Apoptosis was measured using western blot and real-time PCR for Bcl-2, Bax, caspase-3. Results : H&E stain revealed increased brain volume in the MPA-treated group in vivo animal model of neonatal HI brain injury. Western blot and real-time PCR showed the expression of caspase-3 and Bax/Bcl-2 were decreased in the MPA-treated group In in vitro and in vivo model of perinatal HI brain injury, Conclusion : These results may suggest that the administration of MPA before HI insult could significantly protect against perinatal HI brain injury via anti-apoptotic mechanisms, which offers the possibility of MPA application for the treatment of neonatal HI encephalopathy.

Microglial Reaction to the Cytotoxicity of 5,7-Dihydroxytryptamine in the Cat Retina (5,7-Dihydroxytryptamine의 세포독성에 의한 고양이 망막내 미세아교세포의 반응양상)

  • Joo, Woo-Hyun;Nam, Seong-Ahn;Jo, Seung-Mook;Cho, Hyon-Hoo;Shin, Min-Cheol;Won, Moo-Ho;Choi, Chang-Do
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.425-434
    • /
    • 1998
  • This study was designed to investigate the microglial reactions to the neurodegenerative changes in the cat retina. All experiments were performed using adult cats of both sex, weighing $2,500g\sim3,500g$. 5,7-DHT $(100{\mu}g)$ dissolved in 0.1% ascorbic acid was injected into the vitreous body. All injections were performed in one-side eye; the other side served as the control, which was injected only with 0.1% ascorbic acid. Cats were sacrificed at 1, 3, 7, 14 and 21 days after intravitreal injection of 5,7-DHT For light microscopy, retinae were fixed with 4% paraformaldehyde and processed using NDPase histochemistry. Same retinae were fixed with 1% para(formaldehyde-2.5% glutaraldehyde and processed for electron microscopy. NDPase-positive microglial cells were mainly distributed in the inner plexiform layer of the retina, and characterized by a small somata with a few slender processes, which were also extended in the ganglion cell layer (GCL) and inner nuclear layer (INL). The intensity of the microglia stained for NDPase was abruptly increased at 7 day as compared with that of the control, and thereafter continuously sustained until 21 day, the last experimental group in this study. Under the electron microscopical observation, microglial cells in the control group exhibited elongate nucleus with perinuclear chromatin condensation, and the perikaryon was scanty. However, a few hypertrophic glial cells were frequently found at 3 days after the drug injection. By 7 day, most microglial cells directed toward the degenerated neurons in the GCL, and the number of microglial cells was slightly increased as compared with the former group. At the 14 day, most microglial cells wrapped the degenerated cells in the GCL, and a few cells showed phagocytotic features. By 21 day, most microglial cells were engaged in phagocytotic activity, and their cytoplasm was filled with the phagorytosed material. Based on the results, 5,7-DHT may act as a specific neurotoxin to the cat retina, and microglial reactions to the neuronal death are already induced in early experimental stage. These results indicate that the microglial cells in the cat retina show characteristic features as a protective effect of neural tissue.

  • PDF

Atractylenoide II Isolated from Atractylodes macrocephala Inhibited Inflammatory Responses in Lipopolysaccharide-induced RAW264.7 Macrophages and BV2 Microglial Cells (백출에서 분리된 Atractylenolide II의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과)

  • Jin, Hong-Guang;Kim, Kwan-Woo;Li, Jing;Im, Hyeri;Lee, Dae Young;Yoon, Dahye;Jeong, Jin Tae;Kim, Geum-Soog;Oh, Hyuncheol;An, Ren-Bo;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.244-254
    • /
    • 2020
  • Atractylodes macrocephala is a perennial herb and is a member of the Compositae family. This plant is known to contain various bioactive constituents indicating anti-inflammatory, neuroprotective, anti-oxidant, immunological enhancement, and gastroprotective effects. In this investigation, we isolated four compounds with similar chemical structures from A. macrocephala, and evaluated their anti-inflammatory effects. Among the four compounds, compound 2(atractylenolide II) showed the second-best inhibitory effect on the lipopolysaccharide(LPS)-induced production of nitric oxide in RAW264.7 macrophages and BV2 microglial cells. Compound 2 also inhibited the LPS-induced the production of prostaglandin E2(PGE2), and the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 proteins in both cells. In addition, compound 2 suppressed the production of pro-inflammatory cytokines including interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by treatment with compound 2. This compound did not induce the expression of heme oxygenase(HO)-1 protein indicating that the anti-inflammatory effect of compound 2 was independent with HO-1 protein. Taken together, these results suggested that atractylenolide II can be a candidate material to treat inflammatory diseases.

Noni Inhibits Neuronal Damage Caused by the Immune Reaction of Microglial Cells Activated by Doxorubicin (Doxorubicin에 의해 활성화된 미세 아교세포의 면역반응으로 인한 신경손상에 Noni가 미치는 영향)

  • Jung, Se-Hwa;Lee, Seong-Min;Ha, Ji-Sun;Yang, Seung-Ju;Kim, Pyung-Hwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.389-397
    • /
    • 2020
  • Microglial cells function as major immune cells in the brain, playing an important role in the protection and damage of neurons. BV2 microglia, activated by drug stimulation, secrete inflammatory cytokines by activating the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway and are involved in neuroinflammatory and immune responses. The overactivation of microglia by stimuli can cause neuronal damage, leading to brain disease. Noni, a natural product, reduces the activity of microglia to prevent neuronal damage and is a potential natural medicine because it exerts excellent regeneration and anti-inflammatory effects on damaged cells. In this study, when noni was used to treat BV2 cells stimulated by the anti-cancer drug doxorubicin, it reduced the release of pro-inflammatory cytokines from BV2. On the other hand, neuronal damage is a side effect of doxorubicin. Therefore, the cytokines released from doxorubicin-stimulated BV2 cells treated with noni had a positive effect on the neuronal viability compared to those released from doxorubicin-stimulated BV2 cells not treated with Noni. Thus, Noni increases neuronal viability. These results suggest that noni inhibits the release of cytokines by regulating the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway of BV2, thereby inhibiting neuronal damage.

Anti-inflammatory Constituents of the Aerial Parts of Trichosanthes kirilowii in BV2 Microglial Cells (괄루경엽의 BV2 미세아교세포에서의 항염증 활성 성분)

  • Li, Xiao Jun;Kim, Kwan-Woo;Ko, Wonmin;Kim, Dong-Cheol;Yoon, Chi-Su;Liu, Xiang Qian;Kim, Jong-Su;Jang, Kyu-Kwan;Kang, Dae-Gil;Lee, Ho-Sub;Oh, Hyuncheol;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.7-11
    • /
    • 2016
  • The aerial part of Trichosanthes kirilowii Maxim. (Cucurbitaceae), has long been used in traditional Korean and Chinese medicines for the treatment of heatstroke. We isolated and identified three flavones, luteolin-7-O-${\beta}$-D-glucopyranoside(1), luteolin-4'-O-${\beta}$-D-glucopyranoside(2), luteolin(3) from its methanolic extract. In the present study, we found that luteolin attenuates the lipopolysaccharide(LPS)-induced inflammation in BV2 microglial cells. Luteolin significantly inhibited LPS-induced production of pro-inflammatory mediators such as nitric oxide(NO) and prostaglandin $E_2(PGE_2)$ in BV2 microglia in a concentration-dependent manner without cytotoxic effect. Luteolin dose-dependently suppressed the protein expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase-2(COX-2). In addition, luteolin also showed significant induction of heme oxygenase(HO)-1. These results suggest that both the aerial part of T. kirilowii and luteolin may be good candidates to regulate LPS-induced inflammatory response.