• 제목/요약/키워드: 미세소성가공

검색결과 318건 처리시간 0.034초

Development of Induction Heating Apparatus for Rapid Heating of Metallic Mold (미세 임프린팅용 금속몰드의 급속가열을 위한 유도가열기구 개발)

  • Hong, S.K.;Lee, S.H.;Heo, Y.M.;Kang, J.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.199-204
    • /
    • 2007
  • Hot embossing, one of Nanoimprint Lithography(NIL) techniques, has been getting attention as an alternative candidate of next generation patterning technologies by the advantages of simplicity and low cost compared to conventional photolithographies. A typical hot embossing usually, however, takes more than ten minutes for one cycle of the process because of a long thermal cycling. Over the last few years a number of studies have been made to reduce the cycle time for hot embossing or similar patterning processes. The target of this research is to develop an induction heating apparatus for heating a metallic micro patterning mold at very high speed with the large-area uniformity of temperature distribution. It was found that a 0.5 mm-thick nickel mold can be heated from $25^{\circ}C$ to $150^{\circ}C$ within 1.5 seconds with the temperature variation of ${\pm}5^{\circ}C$ in 4-inch diameter area, using the induction heating apparatus.

  • PDF

Modeling Microstructural Changes in Steel Wire Drawing (펄라이트 강 선재 인발에서 미세조직 변화 모델링)

  • Yoon, S.H.;Lee, Y.S.;Nam, W.J.;Park, K.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.271-272
    • /
    • 2008
  • This paper is concerned with the prediction of micro structural changes of pearlitic steel wire during clod drawing. The most important microstructural aspects are ferrite/cementite interlamellar spacing, cementite shape and thickness, since those are crucial factors to determine the mechanical strength of pearlitic steel. In this study, a couple of new algorithms to predict the above microstructural changes are developed based on the deformation histories of macro material points obtained from finite element simulations for pearlitic steel wire drawing. Some predictions are shown. The special features of the algorithms developed in this study are discussed in details.

  • PDF

Analysis of microstructure and texture evolution in AZ31Mg alloy fabricated by direct/indirect extrusion process (직/간접 압출공정에 의해 제조된 AZ31Mg 합금의 미세조직 및 집합조직 변화 분석)

  • Kim, D.H.;You, B.S.;Park, S.S.;Yoon, D.J.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.38-41
    • /
    • 2008
  • To investigate the evolution of microstructure and texture in AZ31 Mg alloy, direct/indirect extrusion process was carried out at $300^{\circ}C$ with various extrusion speeds. The distribution of grain size depends on extrusion method and extrusion speed. More homogeneous grain site can be obtained at higher extrusion speed of indirect extrusion process. Extrusion speed does not affect significantly texture evolution during extrusion process regardless of extrusion method. ODF section is more useful to understand texture evolution during extrusion process compared with pole figure.

  • PDF

Effects of Residual Stress and Surface Defect on the Mechanical Properties of the High Carbon Steel Filaments (고 탄소 미세 강선의 기계적 특성에 미치는 잔류 응력과 표면 결함의 영향)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.134-137
    • /
    • 2008
  • The effects of residual stress and surface defects on the mechanical properties of the high carbon steel filament used for the automotive tire have been experimentally investigated. The samples were fabricated with annealing temperature. The residual stress was measured by focused ion beam and strain mapping software which has advantages, such as data with high accuracy and fast data acquisition time. Mechanical properties, such as tensile strength and fatigue resistance, were gradually increased up to $200^{\circ}C$ and then slightly decreased. From the measurement of residual stress and level of surface defect, it was revealed that the critical factor was varied with different temperature region. That is, the fatigue resistance increased due to decreasing the residual stress and decreased due to increasing the size and distribution of surface defect.

  • PDF

Dimensional change of micro forged part on precision cold forging (미세성형품의 정밀 냉간단조시 치수변화 분석)

  • Lee, M.W.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.254-258
    • /
    • 2008
  • Dimensional accuracy is very important quality in micro forged part, especially on forged part. Dimension of forged part is changed continuously during forging process. Loading, unloading and ejecting stage affects dimensional of the forged tool. The elasto-plastic material model for billet and elastic model for die were used to analyze these changes. At same time, the calculated results were compared and analyzed by the experiment on same conditions. From the experimental and analytical studies, we can calculated the amount of difference between die and forged part, that is 0.49% based on the die dimension. The dimensional change is smaller than that of general sized-forged part,0.6%.

  • PDF

The Effect of Microstructure and Mechanical Property with Cooling Rapid in Boron-Treated Low Carbon Low Alloy Steel (저탄소.저합금 보론 첨가강의 냉각속도에 따른 미세조직과 기계적 성질의 영향)

  • Son, J.Y.;Lee, G.D.;Kim, S.G.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 2008
  • The effects of boron additions in steels have long been recognized as very important, mainly with respect to hardnability of heat treatable steels. we investigated the effect of the microstructure and mechanical properties with cooling condition after heat treatment of the boron-treated(${\fallingdotseq}8{\sim}18ppm$) low carbon(${\fallingdotseq}0.2%C$) low alloy steel. The specimens were austenitised for 10 min at $910^{\circ}C$, cooled for the various periods of time from 10 sec to 30 sec or with water after forming for 15 sec. After cooling, mechanical properties were measured by tensile test and hardness test. For analysis of microstructure, Optical were carried out.

  • PDF

Microstructural evolution of ultrafine grained TRIP low-carbon steel (초미세 결정립 TRIP 강의 미세조직 변화)

  • Lee, C.W.;Ko, Y.G.;NamGung, S.;Shin, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.263-266
    • /
    • 2009
  • Transformation induced plasticity (TRIP) steel consisting of ferrite, austenite, and bainite phases was regarded as an excellent candidate for automotive applications due to the good combination of ductility and strength. The aim of the present study was to understand the microstructural characteristics of ultrafine grained (UFG) TRIP low-carbon steel fabricated via equal channel angular pressing accompanied with intercritical- and isothermal-annealing treatments. When compared to coarse grained counterpart, only the volume fraction of austenite phase in UFG TRIP steel remained unchanged, but all other microstructural variables such as size and morphology were different. It was found that UFG TRIP steel showed the homogeneous distribution of each constituent phase, which was discussed in terms of annealing treatments done in this study.

  • PDF

Microstructure and deformation behavior of nanostructured dual-phase steel (나노 결정립 이상 조직강의 미세조직 및 변형거동)

  • Ko, Y.G.;Lee, K.M.;Lee, C.W.;Kum, D.H.;Shin, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.445-448
    • /
    • 2009
  • The present work deals with microstructure and tensile deformation of nanostructured dual-phase steel consisting of ferrite and martensite phases. Prior to deformation, a fully martensite phase is prepared and then processed by equal channel angular pressing (ECAP) and subsequent annealing. Room-temperature tensile properties are examined and compared to those of dual-phase steels with coarse grains. Due to the combined effects coming from the grain refinement of both phases and their uniform distributions, the nanostructured dual-phase steel exhibits better strength and ductility than coarse grained counterpart, achieving ${\sim}1\;GPa$ and ${\sim}20%$ for tensile strength and elongation, respectively.

  • PDF

Improvement of fatigue resistance of the miniature gear by controlling holding time of temperature in the hot powder extrusion process (분말 압출 공정에서 온도 유지시간 제어를 통한 미세기어의 내피로성 향상 연구)

  • Kim, J.W.;Lee, K.H.;Hwang, D.W.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.449-452
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 1.8 by hot extrusion process of mechanically alloyed Zn-22wt%Al powder at various temperature. The mechanical alloying was preformed for ball milled times of 8h, 16h and 32h by the planetary ball milling. Mechanically alloyed powders were compacted cylindrical performs. Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. The extruded spur gear was sintered for 2h at $350^{\circ}C$ in argon atmosphere. The friction between the die and the powdered billet and the internally different density due to complex product shape cause the internal crack. To overcome the mentioned problems, high dimensional accuracy at cross section of the spur gear and uniform Vickers hardness could be obtained by graphite lubricant and controlling holding time.

  • PDF

Prediction of defect shape change using multiple scale modeling during wire rod rolling process (멀티 스케일 모델을 적용한 선재 공정의 미세결함 형상 변화 예측)

  • Kwak, Eun-Jeong;Kang, Gyeong-Pil;Lee, Kyung-Hoon;Son, Il-Heon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.169-172
    • /
    • 2009
  • Multiple scale modeling has been applied to predict defect shape change during the wire rod rolling process. The size difference between bloom and defect prevent using usual FEM approaches due to the enormous number of elements required to depict the defect. The newly developed multiple scale model can visualize defect shape changes during the multi stands rolling process. The defect positioned at the top and side of bloom are smoothed out but the one at the middle evolved as folding or remained as crack. This approach can be used for defect control with roll shape design and initial bloom shape.

  • PDF