Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.543-545
/
2019
The AQI index has been developed and used to guide the action of particulate matter. Information on the AQI index can be easily provided to the general public, and various services are provided based on the AQI index. As services are provided, accurate AQI index prediction is needed. In this paper, we design the classification model using the circular neural network to predict the AQI index of particulate matter. For the evaluation of the designed model, compare the AQI index of the actual particulate matter with the predicted value.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.540-542
/
2019
With many announcements on air pollution and human effects from particulate matters, particulate matter forecasts are attracting a lot of public attention. As a result, various efforts have been made to increase the accuracy of particulate matter forecasting by using statistical modeling and machine learning technique. In this paper, the particulate matter AQI index prediction is performed using the multilayer perceptron neural network for particulate matter prediction. For this purpose, a prediction model is designed by using the meteorological factors and particulate matter concentration values commonly used in a number of studies, and the accuracy of the particulate matter AQI prediction is compared.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.1009-1011
/
2022
최근 미세먼지는 중대한 건강위험요소로 고려되고 있고, 미세먼지 취약계층은 이에 대한 적극적 대응이 필요하다. 그러나 현재의 대기환경지수는 세분화 되어있지 않아 본 논문에서는 위해성 평가와 GAM 모형을 기반으로 건강취약계층 대상을 위한 미세먼지 위험지수를 새롭게 개발하였다. 또한, 이에 따라 실내 및 실외활동을 추천하는 시스템을 구현함으로써 생활밀착형 스마트시티로 발돋움하도록 한다.
Particulate matter air pollution is a serious problem affecting human health and visibility. The variations in $PM_{10}$ concentrations are influenced by not only local emission sources, but also atmospheric circulation conditions. In this study, we investigate the temporal features of $PM_{10}$ concentrations in South Korea and the atmospheric circulation patterns associated with high concentration episodes of $PM_{10}$ during winter (December-January-February) 2001-2016. Based on those analyses, a Korea Particulate matter Index (KPI) is developed to represent the large-scale atmospheric pattern associated with high concentration episodes of $PM_{10}$. The atmospheric patterns are characterized by persistent high-pressure anomalies, weakened lower-level north-westerly anomalies, and northward shift of the upper-level meridional wind anomalies near the Korean Peninsula. To evaluate the change in occurrence of high concentration episodes of $PM_{10}$ under a possible future warmer climate, we apply KPI analysis to CMIP5 climate simulations. Here, historical and two representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) are used. It is found that the occurrence of atmospheric conditions favorable for high $PM_{10}$ concentration episodes tends to increase over South Korea in response to climate change. This suggests that large-scale atmospheric circulation changes under future warmer climate can contribute to increasing high $PM_{10}$ concentration episodes in South Korea.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.1
/
pp.55-58
/
2024
In this paper, we propose a design and implementation of big data-based fine dust anomaly detection machine learning system. The proposed is system that classifies the fine dust air quality index through meteorological information composed of fine dust and big data. This system classifies fine dust through the design of an anomaly detection algorithm according to the outliers for each air quality index classification categories based on machine learning. Depth data of the image collected from the camera collects images according to the level of fine dust, and then creates a fine dust visibility mask. And, with a learning-based fingerprinting technique through a mono depth estimation algorithm, the fine dust level is derived by inferring the visibility distance of fine dust collected from the monoscope camera. For experimentation and analysis of this method, after creating learning data by matching the fine dust level data and CCTV image data by region and time, a model is created and tested in a real environment.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.5
/
pp.127-133
/
2020
The international cancer research institute under the WHO designated fine dust as a first-class carcinogen. Particular matter refers to dust that is small enough to be invisible and floating in the air. Particular matter is mainly emitted from the combustion process of fossil fuels such as coal and oil, and is a risk factor that can cause lung disease, pneumonia, and heart disease. The Ministry of Environment recently analyzed the output data of 10 fine dust measuring stations and, as a result, announced that about 60% had an error that the existing atmospheric measurement concentration was higher. In order to accurately predict fine dust, the wind direction and measurement position must be corrected. In this paper, in order to solve these problems, fuzzy rules are used to solve these problems. In addition, in order to calculate the fine particulate sensation index actually felt by pedestrians on the street, a computer simulation experiment was conducted to calculate the fine particulate sensation index in consideration of weather conditions, temperature conditions, humidity conditions, and wind conditions.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.409-412
/
2019
국내의 미세먼지 문제가 심각해짐에 따라 대기 오염에 관한 분야의 관심이 높아지고 있다. 현재 정부는 최근 IT 융합 기술의 발전에 따라 빅데이터, 클라우드, 등 사물인터넷 기반 장치의 확산 및 고도화를 위한 기술 접목에 많은 지원과 관심을 보이며 기상청을 통해서는 국내 대기 오염으로 인한 사회적 비용을 낮추기 위해 공공 데이터(Application Program Interface, API)를 활용 다양한 정보 서비스를 지원하고 있다. 하지만 기상청에서 제공하는 정보 서비스에는 한계가 있다. 특히 기상청에서 운영되고 있는 장비들은 고가의 장비로써 비용 및 공간적 설치 제약이 따르며, 약 15km 범위를 한 개소로 담당하여 기상 데이터에 대한 신뢰도에 문제가 발생하고 있다. 본 논문에서는 오픈 하드웨어 기반 소형 기상관측 장비를 활용한 기상지수 및 미세먼지 측정 데이터 제공 시스템을 제안한다. 본 논문에서 제안한 시스템은 기상 계측이 필요한 지역의 작은 공간을 활용, 기상관측 장비를 통해 관측된 데이터와 기상청에서 제공하는 생활 기상지수 알고리즘을 토대로 해당 지역에 맞는 맞춤형 정보를 제공하여 사회적 비용을 낮출 수 있을 것으로 기대한다.
In this article, we suggest a new method for measuring an aerosol's extinction coefficient using a commercial camera. For a given image, we choose three pixel-points that are imaged for the same kinds of objects located in similar directions. We suggest and calculate aerosol extinction coefficients from these RGB gray levels and the different distances of the three objects. To compare our measurement results, we also measure extinction coefficients using lidar. Finally, we find that there are meaningful and sensible correlations between these two measurements, with a correlation coefficient of 0.86. We measure the aerosol extinction coefficient at three different RGB wavelengths using the same method. From these aerosol extinction coefficients at three different wavelengths, we find that the Angstrom exponent ranges from 0.7 to 1.6 over a full daytime period. We believe that these Angstrom exponents can give important information about the size of the fine particles.
Won, Taeyeon;Eo, Yang Dam;Sung, Hong ki;Chong, Kyu soo;Youn, Junhee
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.6
/
pp.573-581
/
2020
Using CCTV images and weather parameters, a method for estimating PM (Particulate Matter) index was proposed, and an experiment was conducted. For CCTV images, we proposed a method of estimating the PM index by applying a deep learning technique based on a CNN (Convolutional Neural Network) with ROI(Region Of Interest) image including a specific spot and an full area image. In addition, after combining the predicted result values by deep learning with the two weather parameters of humidity and wind speed, a post-processing experiment was also conducted to calculate the modified PM index using the learned regression model. As a result of the experiment, the estimated value of the PM index from the CCTV image was R2(R-Squared) 0.58~0.89, and the result of learning the ROI image and the full area image with the measuring device was the best. The result of post-processing using weather parameters did not always show improvement in accuracy in all cases in the experimental area.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.