• Title/Summary/Keyword: 미세먼지 분포도

Search Result 133, Processing Time 0.02 seconds

Influence of Climate Factors and PM10 on Rotaviral Infection: A Seasonal Variation Study (Rotavirus 감염의 연도별 유행시기의 변동양상 및 기후요소와 PM10과의 관계)

  • Im, Hae-Ra;Jeon, In-Sang;Tchah, Hann;Im, Jeong-Soo;Ryoo, Eell;Sun, Yong-Han;Cho, Kang-Ho;Im, Ho-Joon;Lee, Gwang-Hoon;Lee, Hak-Soo;Kang, Yune-Jeung;Noh, Yi-Gn
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.6 no.2
    • /
    • pp.120-128
    • /
    • 2003
  • Purpose: Recently, while the authors were experiencing that the epidemic period of rotaviral infection happened more in the early spring, we tried to find out how the outbreaks of rotaviral infection are changing in detail depending on the weather condition since it has something to do with the climate factors and PM10. Methods: Fourteen hundreds seventy nine patients who were proved to be positive to rotavirus were chosen among children less than 5 years old from January 1995 to June 2003. Among various climate factors, monthly average temperature, humidity, rainfall and PM10 were selected. Results: Rotaviral infection was most active in 2002 as 309 (20.9%) patients. It has been the spring that is the most active period of rotaviral infection since 2000. The temperature (RR=0.9423, CI=0.933424~0.951163), rainfall (RR=1.0024, CI=1.001523~1.003228) and PM10 (RR=1.0123, CI=1.009385~1.015248) were significantly associated with the monthly distribution of rotaviral infection. Conclusion: Through this study we determined that the epidemic period of rotaviral infection is changed to spring, which is different from the usual seasonal periods such as late fall or winter as reported in previous articles. As increased PM10 which could give serious influence to the human body, and changing pattern of climate factors such as monthly average temperature and rainfall have something to do with the rotaviral infection, we suppose that further study concerning this result is required in the aspects of epidemiology, biology and atmospheric science.

  • PDF

Scientific Analysis and Conservation of Goryeo Bronze Bell at Buyeo National Museum (국립부여박물관 소장 고려시대 동종의 과학적 분석과 보존)

  • Lee, Sunmyung;Namkung, Seung;Kim, Yeonmi;Kim, Jongoh
    • Conservation Science in Museum
    • /
    • v.10
    • /
    • pp.1-13
    • /
    • 2009
  • A part of the bronze bell from Goryeo (918-1392) in the collection of Buyeo National Museum was missing, and it was noted to retain corrosion products and burial accretions. Chemical analysis showed that the chemical composition of the bronze bell is Cu (74.18%), Sn (9.58%), Pb (15.77%), and very small amounts of As, Fe, Sb, Bi, and Ag. It was noted that the microstructure of the bronze bell was mainly made up of α phase and α+δ eutectoid phase, and gray (S) and black (Pb segregation) prevailed. Conservation treatment has been done for the preservation of this bronze bell.

Characteristics of Ultrafine Particles in Urban Areas Observed Worldwide and in Korea: Sources and Emissions, Spatial and Temporal Distributions, and Health Effects (한국을 포함한 세계 도심지역에서 관측된 나노미세먼지(UFP)의 특성: 발생원, 시·공간적 분포, 건강에 미치는 영향을 중심으로)

  • Choi, Wonsik;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.337-355
    • /
    • 2018
  • Ultrafine particles (< 100 nm in diameter, UFP) are known to be more toxic per unit mass than larger particles and contribute to more than 90% in particle number concentrations in urbanized cities but much less in mass. The major sources of UFP are vehicle emissions in urban areas. Due to their tiny size (the sizes of UFP from vehicle emissions range from 10 to 60 nm depending on engine and fuel types), inhaled UFP can reach the deepest area of respiratory track (e.g., pulmonary alveoli) as well as all of the body via lymph and blood circulation causing various adverse health effects. This article reviews the sources and emission factors of UFP, temporal and spatial distributions in urban areas and their health effects reported by toxicological and epidemiological studies. We also compared the levels of UFP concentrations measured in other countries with those in Korean cities to evaluate the public exposure to UFP in Korea. Ultimately, we expect this study can contribute to developing the risk assessment techniques for public exposure to UFP in the urbanized cities in Korea.

Spatial and Temporal Features of PM10 Evolution Cycle in the Korean Peninsula (한반도내 미세먼지 발생주기의 시공간분포 특성)

  • Jang, Jae-Hoon;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.189-202
    • /
    • 2012
  • Power spectral analysis for $PM_{10}$ observed at 10 cities in the Korean Peninsula from 2004 to 2010 was carried out to examine the spatial and temporal features of $PM_{10}$ evolution cycle. The power spectrum analysis proposed 9 typical cycles (0.5 day, 1day, 5.4day, 8~10day, 19~21day, 26day, 56day, 180day and 365day) for $PM_{10}$ evolution and the cycles are strongly associated with dilution and transportation due to the meterological influence. The spectrum intensity of 5.4day and 26day $PM_{10}$ evolution cycles mainly depend on the advection cycles of synoptic pressures system and long-term variation of climatological forcing, respectively. The intensity of $PM_{10}$ evolution with longer temporal cycles than one day tends to be stronger in La ni$\tilde{n}$a period in comparison with that in El ni$\tilde{n}$o period. Mean of typical intensity of $PM_{10}$ evolution in La ni$\tilde{n}$a period estimated to be 30% larger than El ni$\tilde{n}$o period. Thus the global scale meteorological phenomena such as El ni$\tilde{n}$o and La ni$\tilde{n}$a also can influence the variation of wind system in the Korean Peninsula and $PM_{10}$ evolution. but global scale forcing tends to influence different manner for $PM_{10}$ evolution in accordance with its temporal cycles.

Analysis on Meteorological Factors related to the Distribution of PM10 Concentration in Busan (부산지역 미세먼지 농도 분포에 따른 기상요소 분석)

  • Kim, Min-Kyoung;Jung, Woo-Sik;Lee, Hwa Woon;Do, Woo-Gon;Cho, Jung-Gu;Lee, Kwi-Ok
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1213-1226
    • /
    • 2013
  • $PM_{10}$ concentration is related to the meteorological variables including to local and synoptic meteorology. In this study the $PM_{10}$ concentrations of Busan in 2007~2011 were analyzed and the days of yellow sand or rainfall which is more than 5 mm were excluded. The sections of $PM_{10}$ concentration were divided according to 10-quantiles, quartiles and 90-quantiles. The 90-quantiles of daily $PM_{10}$ concentration were selected as high concentration dates. In the high concentration dates the daily mean averaged cloudness, mean daily surface wind speed, daily mean surface pressure and PBL height were low and diurnal variation of surface pressure and daily maximum surface temperature were high. When the high $PM_{10}$ dates occurred, the west and south wind blew on the ground and the west wind blew strongly on the 850 hPa. So it seemed that long range transboundary air pollutants made effects on the high concentration dates. The cluster analysis using Hysplit model which is the backward trajectory was made on the high concentration dates. As a result, 3 clusters were extracted and on the short range transboundary cluster the daily mean relative humidity and cloudness were high and PBL height was low.

Composition of Organic Compounds in the Ambient PM10 of the Anmyon Island (안면도 미세먼지 내 유기성분들의 분포 특성)

  • Lee, Ji Yi;Hwang, Eun Jin;Lim, Hyung Bae;Kim, Yu Won;Kim, Eun Sil;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 2013
  • To understand the characteristics of organic aerosol(OA) at the background atmosphere of Korea, an observation of atmospheric PM10 was conducted at a Global Atmospheric Watch(GAW) station operated by the Korean Meteorological Administration at Anmyon Island during 2010. Various organic compounds were analyzed from 26 samples by using a gas chromatography-mass spectrometer. Water soluble organic carbon(WSOC) was also analyzed by using a total organic carbon(TOC) analyzer. Among 6 classes with 68 target compounds detected, the classes of n-alkanoic and alkenoic acids ($326.67{\pm}75.40ngm^{-3}$) and dicarboxylic acids ($323.74{\pm}361.89ngm^{-3}$) were found to be major compound classes in the atmosphere of Anmyon Island. Compared to the previous results reported for 2005 spring samples at Gosan site, the concentrations of organic compounds at Anmyon Island were 3-10 times higher than Gosan site due to the difference of location and sampling period. The concentrations of organic compounds were varied with the atmospheric conditions. Significant increase of the concentrations of dicarboxylic and carboxylic acids in the smog episode indicated that secondary oxidation of organic compounds was major factor to increase OA concentration during smog episode in the Anmyon Island. It was found that the compositions of the OA measured at Anmyon Island were dependent on the air parcel trajectories.

Study on the Characteristics of PM Distribution in Coastal and Inland Cities Correlation and Its Correlation (해안 및 내륙도시 내 토지이용도별 미세먼지 분포 특성 및 상호 관련성에 관한 연구)

  • Han, Seung-Wook;Lee, Soon-Hwan;Lee, Hwa-woon
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1513-1523
    • /
    • 2015
  • In order to clarify the characteristics of PM10 in coastal and inland cities and their variation statistical analysis were carried out using environmental and meteorological data observed at Busan and Daegu metropolitans during 4 year from 2010. Averaged PM10 concentration was higher in industrial area than any other land-use sites, and its maximum value reach on over $50{\mu}g/m^3$ at Jangrim site in Busan. Temporal and spatial variations of PM10 concentration in Busan were more sharply, since topograph and mesoscale wind pattern in Busan is more complicated than those in Daegu. Correlation of PM10 concentrations between sites within Daegu appeared strongly and maximum values $R^2$ is about 0.8. This indicate that because wind pattern induced by mesoscale forcing in Daegu are well unified, the variation of PM10 concentration tends to be similar in all sites within Daegu. However, due to complicate wind pattern induced by topography and coastal line, PM10 correlation of sites within Busan was weaker in comparison with in Daegu. And correlation of PM10 at same lane-use in Busan and Daegu tend to be related to the intensity of meteorological forcing, which can decide the intensity of wind pattern.

Distribution of Polycyclic Aromatic Hydrocarbons in PM$_{10}$ and its Adjacent Soil of Urban Atmosphere (도시대기의 미세먼지(PM$_{10}$) 및 주변토양중 다환방향족 탄화수소의 농도분포에 관한 연구)

  • 박기학;최성훈
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 1998
  • This study was carried out to investigate the distribution of PAHs in atmosphere and soil, and their relationship, accumulation tendency in soil, and its contain burden ratio (%) the PM$_{10}$ and soil were sampled adjacent to a roadside and analysed by HPLC from August 25th 1996 to September 22nd 1996 in Seoul and Kunggido area. The main results are summarized below 1. The concentration of PM$_{10}$ in the ambient air was showed in order of industrial region ($142.70\pm 21.77 \mu g/m^3$), commercial region ($136.51\pm 31.62 \mu g/m^3$), residential region ($110.12\pm 14.98 \mu g/m^3$), greenbelt region ($77.44\pm 12.12 \mu g/m^3$), respectively. 2. Distribution of PAHs concentration level in PM$_{10}$ and soil was showed in order of industrial region, commercial region, residential region, greenbelt region, respectively in all components. 3. The contain burden ratio (%) in PM$_{10}$ was attested that BbF was the highest contain burden component (21.7-32%) and An was the lowest contain burden component (0.35-1.95%) in all region. 4. The contain burden ratio (%) in soil was attested that Pb (20.5%) was the highest and An (0.8%) was the lowest contain burden component in industrial region and BbF (21.9%) and An (0.45%) were the same tendency in commercial region and Py (21.6%) and BkF (3.5%) were in residential region, Py (29%) and An (2.6%) were in greenbelt region. 5. The relationship between concentration of PAHs in PM$_{10}$ and soil was attested that the component of BbF (r=0.514) was very highly correlated, and there were significant in Fl and BaA in soil between industrial region and commercial region (P<0.05).

  • PDF

Distribution Characteristics and Source Estimation of Polycyclic Aromatic Hydrocarbons in PM-10 from Gwangju (광주지역 미세먼지(PM-10)의 다환방향족탄화수소 분포 특성 및 발생원 추정)

  • Seung-Ho Kim;Byung-Hoon Park;Min-cheol Cho;Hye-Yun Na;Won-Hyung Park;Gwang-yeob Seo;Se-Heang Lee;Hung-Soo Joo
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.243-257
    • /
    • 2023
  • This study was conducted to investigate the distribution characteristics, source identification, and health risk of polycyclic aromatic hydrocarbons (PAHs) present in particulate matter 10 (PM-10), in Gwangju. PM-10 samples were collected from September 2021 to August 2022 from three sampling sites, one located in each of the following areas: green, residential, and industrial. The average concentrations of PAHs were found to be higher in the industrial area (9.75±6.51 ng/㎥) than in the green (6.90±2.41 ng/㎥) and residential (6.74±2.38 ng/㎥) areas. Throughout the year and across all sites, five-ring PAHs accounted for the largest proportion (29.8-34.5%) of all PAHs. The concentrations of PAHs showed distinct seasonal variations, with the highest concentration observed in winter, followed by autumn, spring, and summer. Source apportionment analyses were performed using diagnostic ratios and principal component analyses, which indicated that coal/biomass combustion and vehicle emissions were the primary sources of PAHs in PM-10. The incremental lifetime cancer risk was estimated for all age groups at all sampling sites, and the results revealed a much lower risk level than the standard acceptable risk level (1×10-6).

Concentrations Distribution and Risk Evaluation of Heavy Metal in PM-10 in Gwangju (광주지역 미세먼지(PM-10) 중 중금속 농도분포 및 위해성 평가)

  • Hye-Yun, Na;Youn-Goog Lee;Min-Cheol Cho;Hwan-Gi Kim;Won-Hyeong Park;Gwang-Yeob Seo;Se-Heang Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.283-296
    • /
    • 2024
  • This study examined the distribution of airborne metals concentrations and conducted a risk assessment in PM-10 in Gwangju from 2014 to 2022. There were a total of six points, and the concentration of heavy metals at each point was highest in the order of Pyeong-dong(1.5472 ㎍/m3 ) > Nongseong-dong(1.2093 ㎍/m3 ) > Geonguk-dong(1.0100 ㎍/m3 ) > Duam-dong(0.9684 ㎍/m3 ) > Seo-dong(0.9515 ㎍/m3 ) > Nodae-dong(0.8321 ㎍/m3 ). In recent years, the concentration of heavy metals in the atmosphere has generally risen, accompanied by an increase in heavy metals in the soil. The average seasonal concentrations were in the following order: spring(1.4448 ㎍/m3 ) > winter(1.2939 ㎍/m3 ) > fall(0.8303 ㎍/m3 ) > summer (0.5928 ㎍/m3 ). The atmospheric heavy metals most correlated with PM-10 were Ca(0.69), Fe(0.62), Al(0.62) and Mg(0.60). Within the acceptable risk level (1.0E-06) set in this study, heavy metals in the atmosphere were found to have the most excess cancer risk, and the integrated non-cancer risk was as low as 1 or less.