• Title/Summary/Keyword: 미세먼지(PM-10)

Search Result 554, Processing Time 0.025 seconds

High Resolution Fine Dust Mass Concentration Calculation Using Two-wavelength Scanning Lidar System (두파장 스캐닝 라이다 시스템을 이용한 고해상도 미세먼지 질량 농도 산출)

  • Noh, Youngmin;Kim, Dukhyun;Choi, Sungchul;Choi, Changgi;Kim, TaeGyeong;Kim, Gahyeong;Shin, Dongho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1681-1690
    • /
    • 2020
  • A scanning lidar system has been developed. The system has two wavelength observation channels of 532 and 1064 nm and is capable of 360-degree horizontal scanning observation. In addition, an analysis method that can classify the measured particle as an indicator of coarse-mode particle (PM2.5-10) and an indicator of fine-mode particles (PM2.5) and calculate the mass concentration of each has been developed by using the backscatter coefficient at two wavelengths. It was applied to the data calculated by observation. The mass concentrations of PM10 and PM2.5, which showed a distribution of 22-110 ㎍/㎥ and 7-78 ㎍/㎥, respectively, were successfully calculated in the Ulsan Onsan Industrial Complex using the developed scanning lidar system. The analyzed results showed similar values to the mass concentrations measured on the ground around the lidar observation area, and it was confirmed that high concentrations of 80-110 ㎍/㎥ and 60-78 ㎍/㎥ were measured at points discharged from factories, respectively.

A Study on the Realization of Dust Damage Compensation Calculation for the Prevention of Dust Damage in Construction Site (공사장 먼지피해 예방을 위한 먼지피해 배상액 산정 현실화 방안 연구)

  • Kim, Jinho
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.374-385
    • /
    • 2022
  • Purpose: Even if a damage is applied to the dust of the construction site containing the first-class carcinogen, it is dismissed or 5~30% of the amount of noise damage compensation is paid., Because of such loopholes, some construction companies are neglecting the dust management of the construction site, and the damage of the workers and the residents in the construction site continues. Method: The purpose of this study is to examine the problems of the calculation criteria of damage compensation amount of construction site dust, the measurement of dust concentration, the analysis of measurement data (the data of electric signboard measuring device by the mining scattering method), the prediction and evaluation methods such as modeling, and to suggest improvement measures. Result: It is found that it is impossible to calculate the amount of damages from dust damage in the construction site by calculating the current dust damage compensation amount and dust concentration modeling and measurement. Conclusion: It will receive an application for compensation for damage within the site where damage is expected (about 100m in the straight line and the boundary line of the site), and present a method of calculating the amount of compensation that differentially evaluates dust damage to the degree of dust management and compliance with dust-related legal standards.

An Asian Dust Compensation Scheme of Light-Scattering Fine Particulate Matter Monitors by Multiple Linear Regression (다중 선형 회귀에 의한 광산란 초미세먼지 측정기의 황사 보정 기법)

  • Baek, Sung Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.92-99
    • /
    • 2021
  • Light-scattering fine particulate matter monitors can measure particulate matter (PM) concentrations in every second and can be designed in a portable size. They can measure the concentrations of various PM sizes (PM1.0, PM2.5, PM4.0 and PM10) with a single sensor. They measure the number and size of particulate matters and convert them to weight per volume (concentration). These devices show a large error for asian dust. This paper proposes a scheme that compensates the PM2.5 concenstration error for asian dust by multiple linear regression machine learning in light-scattering PM monitors. This scheme can be effective with only two or three types of PM sizes. The experimental results compare a beta-ray PM monitor of national institute of environmental research and a light-scattering PM monitor during a month. The correlation coefficient (R2) of theses two devices was 0.927 without asian dust, but it was 0.763 due to asian dust during the entire experimental period and improved to 0.944 by the proposed machine learning.

2008년 황해지역의 광역적 대기오염 이동에 대한 에어로졸 크기 분포 특성

  • Kim, ak-Seong;Jeong, Yong-Seung;Son, Jeong-Ju
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.37-37
    • /
    • 2010
  • 2008년 동아시아 대륙에서 발생기원이 다른 황사와 인위적 오염입자의 광역적 이동 사례를 NOAA위성 RGB 합성영상과 지상 TSP, PM10, PM2.5 질량농도 관측으로 구별하였다. 또한 Terra/Aqua 위성MODIS (MODerate Imaging Spectroradiometer) 센서의AOD (Aerosol Optical Depth)와 FW (Fine aerosol Weighting)를 통해 동아시아 지역에서 발생기원이 다른 대기 에어로졸의 분포와 입자 크기 특성을 분석하였다. 중국 북부와 몽골, 그리고 중국 황토고원에서 모래폭풍이 발생하여 광역적으로 이동하여 청원에 먼지입자(황사)로 영향을 주는 6 사례를 분석했다. 질량농도 TSP중 PM10 은 70%, PM2.5 는 16% 로 조대입자 (> $2.5{\mu}m$)의 비율이 큰 것은 사막과 반사막의 자연적 발생원에서 생성되었기 때문이다. 그러나, 모래 폭풍이 이동 과정에서 중국 동부의 산업 지역을 거쳐 유입 되는 사례에서는 TSP 중 PM2.5 가 23% 까지 증가하기도 했다. 중국 동부로부터 황해를 거쳐 한반도로 유입하고 있는 다른5사례는 TSP 중 PM10, PM2.5가 각각 82%, 65% 로 PM2.5 의 비율이 높았는데 인위적 오염입자의 영향 때문이다. 동아시아 지역에서 인위적 오염입자의 광역적 이동 사례에 대한 평균 AOD는 $0.42{\pm}0.17$로 황사에 의한 AOD ($0.36{\pm}0.13$)와 비교하여 대기 에어로졸에 대한 비율이 높게 나타났다. 특히, 중국 동부에서 황해, 한반도, 동해에 이르는 광역적 지역에 높은 AOD값이 분포했다. 인위적 오염입자의 사례는 FW가 평균 $0.63{\pm}0.16$로 모래폭풍의 이동 사례의 $0.52{\pm}0.13$ 보다 높은 값을 보이고 있어, 대기 에어로졸에 대한 인위적 미세 오염입자의 기여가 크게 나타나고 있었다.

  • PDF

Characteristics of indoor air quality in the overground and underground railway stations (지상과 지하역사의 실내공기질 특성과 외기영향 평가)

  • Namgung, Hyeong-Kyu;Song, Ji-Han;Kim, Soo-Yeon;Kim, Hee-Man;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.17-25
    • /
    • 2016
  • In this study, the air quality of underground and overground railway stations was evaluated focusing on the degree of influence of the outside air quality. The measured components were particulate matter ($PM_{10}$), carbon dioxide ($CO_2$), carbon monoxide (CO), nitrogen dioxide ($NO_2$), formaldehyde (HCHO), ozone ($O_3$), total airborne bacteria (TAB), total volatile organic carbon (TVOC), and Radon (Rn), which are included in the maintenance standards and recommended standards of the Indoor Air Quality Management Act. Also, the indoor/outdoor concentration ratios of $PM_{10}$, $NO_2$, and $O_3$ were calculated to estimate the influence of the outdoor air quality. The concentrations of $PM_{10}$ HCHO, TVOC, $NO_2$, and Rn in the underground stations were found to be higher than those in the overground stations. These results indicate that the (present) generation of contaminants are caused by the indoor source of the underground station. The ozone concentration of the overground stations was higher than that of the underground stations, which indicates that the outdoor ozone concentration influenced that of the overground stations directly. Thus, methods of improving the IAQ should take into consideration the types of contamination.

Air quality monitoring and evaluation of bag filter performance for removal of fine particulates in roadway tunnels (도로터널 내 공기질 측정과 Bag Filter를 이용한 미세먼지 제거 성능평가)

  • Kim, Beom-Seok;Park, IL-Gun;Jung, Dong-Gyun;Lee, Sang-Don;Hong, Min-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.523-531
    • /
    • 2015
  • Air quality was monitored in four roadway tunnels located near Seoul metropolitan area from 7:00AM to 9:00AM. PM10 concentrations range $111{\sim}268{\mu}g/m^3$, which are 2~5 times higher than annual standard $50{\mu}g/m^3$, and PM2.5 concentrations range $35{\sim}65{\mu}g/m^3$, which are 1.5~2.5 times higher than annual standard $25{\mu}g/m^3$. Benzene concentrations range 300~500 ppb, which are 200~300 times higher than 1.5 ppb which is air quality standard. Four-month long term air quality monitoring and test results in one of long tunnels show that PM10 range $30{\sim}400{\mu}g/m^3$ and over 97% of them can be removed by bag filter, effectively. Finally, benzene concentrations range 250~350 ppb.

Composition and emission characteristics of fine particulate matters at the 1100 Site of Mt. Halla during 2011-2012 (한라산 1100고지 대기 미세먼지의 조성 및 배출 특성: 2011~2012년 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Ko, Hee-Jung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.209-218
    • /
    • 2016
  • PM10 and PM2.5 samples were collected at the 1100 site of Mt. Halla in Jeju Island during 2011~2012, and their ionic and elemental species were analyzed, in order to investigate the characteristics of emission sources as well as aerosol compositions. The mass concentrations of PM10 and PM2.5 were 22.0±13.1 µg/m3 and 11.3±6.1 µg/m3, respectively, showing 2.4~2.6 times lower than those of the capital city area of Korea. The composition ratios of major secondary pollutants (nss-SO42−, NH4+, and NO3) were the highest as 85.5 % for PM10 and 91.3 % for PM2.5, and followed by the order of marine (Na+, Cl, and Mg2+), organic acid (HCOO and CH3COO), and soil (nss-Ca2+) sources. Among the elemental species in PM10, soil-originated components (Al, Fe, and Ca) were consisted of 50.9 %, which was higher proportion than marine and anthropogenic elements. The acidification of the fine particulate matters was found to be influenced mostly by sulfuric and nitric acids, and these acids were mainly neutralized by calcium carbonate in PM10 and by ammonia in PM2.5. The clustered back trajectories showed that 47 % of total air mass inflows was from the China, and the concentrations of NO3 and nss-Ca2+ were especially high corresponding to the inflows.

Analysis of Infiltration of Outdoor Particulate Matter into Apartment Buildings (외기 중 미세먼지의 공동주택 실내 유입에 관한 연구)

  • Bang, Jong-Il;Jo, Seong-Min;Sung, Min-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • Recently, concentration of fine and ultra-fine particulate matter(PM) has been increased in KOREA. The increase of PM in KOREA is due to increase of domestic industries and yellow dust from china. PM is known to cause diseases such as dyspnoea, asthma, arrhythmia. Since PM is harmful to human, KOREA Ministry of Environment(ME) warns people to stay indoors when the outdoor PM concentration is high. However, prior studies has shown that indoor PM concentration can be relatively high when outdoor PM concentration is high due to infiltration of PM into buildings though leakage areas. In this study, airtightness, indoor and outdoor pressure difference and PM 2.5 & 10 concentration were measured in an apartment complex to observe PM infiltrating into building. Field measurement was conducted in newly-built apartment buildings to avoid the influence of indoor PM which can be generated by residents. The airtightness test was conducted to identify the leakage areas of the apartment, such as electric outlets and supply/exhaust diffusers. The airtightness test result showed that the air leakage area of the building was dominant in buildings envelop. According to indoor and outdoor pressure difference measurement result and PM concentration measurement result, it can be concluded that outdoor PM can infiltrate into indoor by leakage areas when wind is blown toward the apartment. As a result, pressure difference formed by the external weather condition and architectural characteristics such as the airtightness in building can influence PM to infiltrate into buildings. In further studies, I/O ratio, stack-effect, infiltration and penetration factor will be considered.

A Study on the Effects of Asian Dust to the Signal of Satellite Communication (위성통신에 미치는 황사의 영향에 관한 연구)

  • 홍완표;전영신
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.722-729
    • /
    • 2004
  • To analysis on the degradation of the satellite communication signal due to Asian dust that appeared on Korean peninsula during March and April 2004, EIRPs of L, S, C, Ku and Ka frequency bands of the downlink of satellite communication link were measured by Satellite Signal Monitoring Center located in Icheon, Korea. The measured EIRP values were compared to the total dust density and dust particle distribution that were measured using PM 10 and OPC by the Korea Meteorological Administration, and the possible correlation between three sets data were analyzed.