• 제목/요약/키워드: 미세딤플

검색결과 16건 처리시간 0.019초

Micro-Texturing한 Slider Bearing의 윤활특성 : 딤플 밀도의 영향 (Lubrication Characteristics of Micro-Textured Slider Bearing: Effect of Dimple Density)

  • 박태조;이준오
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.437-442
    • /
    • 2013
  • 마찰을 크게 줄임과 동시에 신뢰성을 향상시키기 위하여 평행 스러스트 베어링, 메카니컬 시일과 피스톤링 등과 같은 기계부품에 표면가공방법이 최근에 적용되고 있다. 본 논문에서는 상용 전산유체역학 S/W인 FLUENT를 사용하여 반구형 미세딤플이 등간격으로 배치되어 있는 슬라이더 베어링의 윤활특성을 조사하였다. 미세딤플의 직경과 수에 따라서 압력분포, 지지하중, 누설유량과 마찰력은 아주 크게 변화하였다. 특히, 딤플의 밀도증가에 따라서 지지하중과 마찰력은 거의 선형적으로 감소하는 반면에 누설유량은 급격하게 증가하였다. 본 논문의 결과는 각종 미끄럼 베어링의 윤활성능을 향상시키기 위한 최적 딤플설계에 사용할 수 있으며, 추가적인 연구가 요구된다.

적응적 다중 이진화에 의한 IC 패키지 및 Pin1 딤플 검출 (IC Package Location and Pin1 Dimple Extraction Using Adaptive Multiple Thresholding)

  • 김민기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.361-363
    • /
    • 2001
  • 반도체 패키지의 마킹검사(marking inspection)를 위해서는 입력 영상으로부터 검사할 패키지의 정확만 위치 검출과 패키지 윗면에 나타난 제작사 로고, 문자, Pin1 딤플의 추출이 필수적이다. 본 연구는 마킹검사를 위한 선행 연구로 마킹검사를 수행할 때, 검사할 IC 패키지의 위치와 방향을 정확하게 검출하는 것을 목적으로 하고 있다. IC 패키지의 외곽을 구성하는 리드의 명도 값은 트레이의 명도 값과 큰 차이를 나타낸다. 그러나 IC 패키지의 방향을 나타내는 Pin1 딤플은 배경과 동일한 색상으로 다만 약간 오목하게 들어가서 명도 값의 차이가 미세하다. 이러한 두 가지 상이한 특징을 효과적으로 처리하기 위하여 적응적 다중 이진화 방법을 제시하였다. 76개의 명도 영상에 대한 실험 결과 제안된 이진화 방법은 매우 효과적이었으며, 이진화된 영상으로부터 IC 패키지의 정확한 위치 검출과 방향 확인이 가능하였다.

  • PDF

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제2보 - 딤플 위치의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 2 - Effect of Dimple Location)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2010
  • In the last decade, laser surface texturing (LST) has emerged as a viable option of surface engineering. Many problems related with mechanical components such as thrust bearings, mechanical face seals and piston rings, etc, LST result in significant improvement in load capacity, wear resistance and reduction in friction force. It is mainly experimentally reported the micro-dimpled bearing surfaces can reduce friction force, however, precise theoretical results are not presented until now. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is used to investigate the lubrication characteristics of a parallel thrust bearing having 3-dimensional micro-dimple. The results show that the pressure, velocity and density distributions are highly affected by the location and number of dimple. The numerical method and results can be use in design of optimum dimple characteristics, and further researches are required.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제3보 - 딤플 수의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 3 - Effect of Number of Dimples)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.302-307
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied recently to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, numerical analysis is carried out to investigate the effect of number of dimples on the lubrication characteristics of parallel thrust bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure distributions of present analysis are physically consistent than those obtained from numerical analysis of Reynolds equation. The overall lubrication characteristics are highly affected by number of dimples and their locations. The results can be use in design of optimum dimple characteristics to improve thrust bearing performance and further researches are required.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

타원체 딤플로 Texturing한 평행 스러스트 베어링의 윤활특성 (Lubrication Characteristics of Surface Textured Parallel Thrust Bearing with Ellipsoidal Dimples)

  • 박태조;김민규
    • Tribology and Lubricants
    • /
    • 제32권5호
    • /
    • pp.147-153
    • /
    • 2016
  • Friction reduction between machine components is important for improving their efficiency and lifespan. In recent years, surface texturing has received considerable attention as a viable means to enhance the efficiency and tribological performance of highly sliding mechanical components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, we perform lubrication analysis to investigate the effect of dimple shapes and orientations on the lubrication characteristics of a surface textured parallel thrust bearing. Numerical analysis involves solving the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. We use dimples consisting of hemispherical and different semiellipsoidal orientations for simulation. We compare pressure and streamline distributions, load capacity, friction force, and leakage flowrate for different numbers of dimples and orientations. We find that the dimple shapes, orientations, and their numbers starting from an inlet influence the lubrication characteristics. The results show that partial texturing of the bearing inlet region, and the ellipsoidal dimples with the major axis aligned along the lubricant flow direction exhibit the best lubrication characteristics in terms of higher load capacity and lower friction. The results can be used in the design of optimum dimple characteristics for parallel thrust bearings, for which further research is required.

미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 (NUMERICAL INVESTIGATION ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO DIMPLE TEXTURED SURFACES)

  • 홍사훈;이재응;조민행;이성혁
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.56-61
    • /
    • 2009
  • This study deals with the numerical investigation on two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces by using the commercial CFD code (Fluent V.6.3) to examine the influence of micro dimple depth and width on the reduction in friction under the sliding plate condition. In addition, single and multiple dimple arrays are simulated, all for a fixed area fraction of dimple on the surface. As a result, it is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces, and such an optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses, indicating that the reduction of friction is likely to be associated with inner flows of lubricant inside dimples. Moreover, it is observed that at the fixed area fraction, the friction reduction increases with the increase of dimple diameter.

미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구 (NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES)

  • 홍사훈;이재봉;조민행;이성혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

Nd:YAG 레이저를 이용한 polyoxymethylene 표면의 마이크로 딤플가공 및 특성에 관한 연구 (Characteristics of micro-dimple formed on polyoxymethylene surface by Nd:YAG laser texturing technique)

  • 조민행;이재봉;이성혁;김주한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.193-197
    • /
    • 2008
  • Array of micro-dimple on polyoxymethylene (POM) surface was fabricated using Q-switched Nd:YAG laser and its characteristics were studied in terms of heat affected zone (HAZ), dimple geometry, and the effect of specimen surface roughness. Process parameters such as lamp current, process time, and the stream of air in order to minimize HAZ and flow of molten polymer into cavity were extensively studied in this work. Dimple geometry was further investigated by 3-D optical microscopy to provide deep insight into morphological analysis near the dimples. This paper also presents the applicapability of micro-dimples in polymeric tribological system, such as a thrust bearing. Micro-dimples were expected to provide low coefficient of friction and enhanced lubricity at the sliding interface.

  • PDF