• Title/Summary/Keyword: 미세공극

Search Result 244, Processing Time 0.028 seconds

Adsorption of p-Xylene by Expanded Graphite (팽창흑연을 이용한 p-Xylene 흡착)

  • Lee, Chae-Young;Jee, Hyeong-Sub;Chung, Jae-Woo;Kim, Sang-Hyoun;Cho, Yun-Chul;Kang, Seok-Tae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, adsorption characteristics of expanded graphite (EG) were investigated by a series of batch adsorption tests using p-Xylene as a model volatile organic compounds (VOCs). After acid treatment, graphite were expanded at various temperature from $600^{\circ}C$ to $1000^{\circ}C$ for one minute. The optimal temperature was $800^{\circ}C$, where the expansion ratio reached 195 times of original volume. The BET specific surface area of EG was $92.4m^2/g$, which was only 1/10 of granular activated carbon (GAC), however the adsorption of p-Xylene by EG was almost completed within 5 minutes while that of GAC continued for 7 days because the majority of pores of EG was consisted with meso- and macro-pores. According to the Langmuir isotherm analysis, the maximum specific adsorption of p-Xylene onto EG was 24.0 mg/L with the adsorption constant of 7.94. In conclusion, the adsorption capacity of EG was much less than that of GAC due to the significantly lower specific surface area, but the first order kinetic constant was more than 500 times larger than GAC. Overall, EG might be effective where the fast adsorption is required.

Effects of Leveler on the Trench Filling during Damascene Copper Plating (전해전착시 상감 구리 배선의 충전에 미치는 레벨러의 효과)

  • Lee, Yu-Young;Park, Young-Joon;Lee, Jae-Bong;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.153-158
    • /
    • 2002
  • The effects of leveler on the copper trench filling were investigated during damascene plating process. To investigate the trench filling effect with the addition of a leveler, a cross-section images of the electroplated trenches with the width of$0.37{\mu}m,\;and\;0.18{\mu}m$ were observed by field emission scanning electron microscope (FE-SEM). Polyethylene glycol(PEG), 3-mercapto-1-propanesulfonic acid and Janus Green B were used as a carrier, an accelerator and a leveler. $0.37{\mu}m$ trenches were superfilled without voids, but there was voids formation in $0.18{\mu}m$ trenches when the leveler was not added into the electrolyte. On the other hand $0.18{\mu}m$ trenches were superfilled without voids with the addition of the leveler due to the reduction growth rate of copper at protrusions and edges, which yield smooth final deposit surface. The leverer effect becomes more significant as the width of trenches becomes smaller when trenches are filed.

전해환원 금속전환체 잔류염 제거 기초 실험

  • Park, Byeong-Heung;Jeong, Myeong-Su;Jo, Su-Haeng;Heo, Jin-Mok
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.296-296
    • /
    • 2009
  • 산화물 사용후핵연료를 대상으로 하는 파이로 공정은 고온 용융염 매질에서 산화물을 금속으로 전환시키는 전해환원 공정으로부터 시작된다. 이후, 전해정련 공정이 도입되어 전해환원 공정에서 금속으로 환원된 생성물을 처리하게 된다. 전기화학적 공정인 이 두 공정에는 전류전달 매질인 전해질로 용융염이 사용된다. 그러나 전해환원 공정은 LiCl 염을 기반으로 하는 반면 전해정련은 LiCl-KCl 공융염 조건에서 운전하여 두 공정의 연계성 향상 및 공정 안정성 확보를 위해서는 전해환원 공정에서 생성되는 금속전환체에 존재하는 잔류염을 제거하는 공정의 도입이 두 공정사이에 고려되고 있다. 전해환원 공정에서 산화물이 금속으로 환원되는 동안 고체입자의 외형이 유지되며 따라서 제거된 산소에 의해 금속전환체에는 공극이 발생하게 된다. 또한, 전해환원에 도입되는 산화물의 물리적 형태가 분말 또는 펠렛 등 다양한 형태로 도입 가능하여 단위 입자들 사이에 많은 공극이 발생하게 된다. 이렇게 기존재하거나 또는 공정 운전에 의해 새롭게 생성된 공극에는 전해환원 매질인 LiCl 염이 침투하여 금속전환체는 염에 의해 젖게 되며 공정 종료시 고화되어 금속전환체에 포함된다. LiCl을 제거하기 위해서는 가열에 의한 증류가 연구되고 있다. 그러나 LiCl의 낮은 증기압에 의해 비교적 낮은 온도에서 증발시키기 위해서는 감압조건이 필수적으로 고려되어야 한다. 한국원자력연구원에서는 다공성 모의 금속전환체를 사용하여 LiCl에 의한 Wetting 후 적절한 증발 조건 결정을 목적으로 온도 및 압력 조건 설정을 위한 기초실험에 결과를 수행하였다. 본 연구의 기초 실험 결과 $700^{\circ}C$온도 조건과 감압조건이 잔류염 제거를 위한 공정조건임을 밝혔다. 또한 모의 금속전환체를 담고 있는 미세 다공성 Basket은 고온조건에서 공극의 변형에 의해 증발에 대한 저항으로 작용하여 증발 효율을 저하시키는 것으로 나타났다. 따라서 잔류염 제거를 위해서는 전해환원 Basket이 비교적 큰 공극을 지녀야 할 것으로 판단된다.

  • PDF

Modeling on Ultrasonic Velocity in Concrete Considering Micro Pore Structure and Loading Conditions (공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링)

  • Kim, Yun Yong;Oh, Kwang-Chin;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.415-426
    • /
    • 2015
  • For a long time, evaluation of soundness and strength in concrete has been performed through ultrasonic velocity(UV), which is essential work in field assessment. Porosity in concrete is a major parameter indicating durability and strength, and UV passing concrete depends on porosity variation. In this paper, a modeling on UV through concrete is carried out considering porosity and the results are verified with those from test. Additionally UV in concrete under compression/tension loading condition is measured and UV modeling with loading condition is performed. Up to 50% of loading ratio, UV slightly increases and greatly drops at peak load in compression region, however it fluctuates in tensile region due to micro cracking in matrix. The proposed model shows a reasonable agreement with test results in control and compression region, and needs modification for tensile region considering micro cracks and local aggregate interlocking.

An Experimental Study on the Characteristics of Microporous Structure Formation by Curing Condition of Cement and Blast Furnace Slag Composite (시멘트 및 고로슬래그 경화체의 양생환경에 따른 미세 공극구조 형성 특성에 관한 실험적 연구)

  • Park, Cheol;Jung, Yeon-Sik;Seo, Chee-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.63-70
    • /
    • 2017
  • When industrial by-products like slag and fly ash are using in concrete with cement, it improves strength and durability against external deterioration factors by densifying the structure through potential hydraulic and pozzolanic reaction. But it has been pointed out that high dependence on the quality variation and the curing condition using a admixure material for concrete. In this study, the characteristics of internal micropore structure according to curing condition were analyzed for pastes and mortar specimens under using blast furnace slag powder. As a result, the variation of compressive strength and the internal microstructure were observed according to curing conditions by binder type. Particularly, using blast furnace slag powder, decrease in compressive strength were clearly observed in indoor and carbonation curing compared with water curing. The pore structure analysis also clearly observed the decrease of the gel pore existing in the CSH hydrate layer and the increase of the capillary pore in indoor and carbonation curing compared with water curing condition.

Influence of Micro-Structural Characteristics of Concrete on Electrical Resistivity (콘크리트의 미세구조 특성이 전기저항에 미치는 영향)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.122-129
    • /
    • 2013
  • Since electrical resistivity of concrete can be measured in a more rapid and simple way than chloride diffusivity, it should be primarily regular quality control of the electrical resistivity of concrete which provides the basis for indirect of quality control of chloride diffusivity during concrete construction. If this is realized, the electrical resistivity of concrete can be a crucial parameter to establish maintenance strategy for marine concrete structures. The purpose of this study is to develop, design and test a surface electrical resistivity measurement protocol. Microstructural affecting factors such as capillary water, porosity, tourtousity, and so on, on the electrical resistivity of concrete were examined taking into account for mixing proportion properties, and hydration stage. This study can provide a non-destructive approach for durability design of marine concrete. From the relationship between electrical resistivity and chloride diffusivity, it is expected that the result is subsequently used as a calibration curve for an indirect control of the chloride diffusivity based on regular measurements of the electrical resistivity during concrete construction.

Dynamic Properties of Silty Sands at High Amplitude (Basic Properties) (Silt질 모래의 고변형률 진동특성(기본성질))

  • 송정락;김수일
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.27-34
    • /
    • 1988
  • Soils behave non-linearly at high strain. This study investigated the non-linear behavior of silty sands (Mixture of Ottawa Sand and Quartz Powder) by resonant column tests. The results were ·compared with Ramberg-Osgood's non-linear equation. From the tests, it was shown that the change of shear modulus and damping ratio was more sharp at low fine content, high void ratio and low confining pressure. It was also found that famberg-Osgood parameter, R was approximately 2.0, however the range of C varied from 200 to 3200.

  • PDF

Pore-network Study of Liquid Water Transport through Multiple Gas Diffusion Medium in PEMFCs (고분자 연료전지의 다공성층 내에서의 액상수분 이동에 관한 공극-네트워크 해석 연구)

  • Kang, Jung-Ho;Lee, Sang-Gun;Nam, Jin-Hyun;Kim, Charn-Jung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.46-53
    • /
    • 2011
  • Water is continuously produced in polymer electrolyte membrane fuel cell (PEMFC), and is transported and exhausted through polymer electrolyte membrane (PEM), catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL). The low operation temperatures of PEMFC lead to the condensation of water, and the condensed water hinders the transport of reactants in porous layers (MPL and GDL). Thus, water flooding is currently one of hot issues that should be solved to achieve higher performance of PEMFC. This research aims to study liquid water transport in porous layers of PEMFC by using pore-network model, while the microscale pore structure and hydrophilic/hydrophobic surface properties of GDL and MPL were fully considered.

  • PDF

Evaluation of different methods to remove pore water in an early age cement paste for the degree of hydration measurement and pore structure analysis. (공극수 추출방법에 따른 시멘트 페이스트의 수화도와 공극 특성 분석)

  • Ahn, Yu-Ri;Lu, Yang;Kim, Baek-Joong;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.245-246
    • /
    • 2012
  • The analysis of microstructure is essential to understand the material behavior such as shrinkage, strength, and permeability. In this study, three different easy-to-apply specimen preparation methods for the mercury intrusion analysis were chosen, and their effectiveness in removing pore water and thus impeding further hydration was evaluated. As a result, it was found that the direct freeze-drying was the most effective among the three methods.

  • PDF

Evaluation of Freezing-thawing Resistance by Sea water with Variation of micropores of slag concrete (슬래그 콘크리트의 미세 공극구조 변화에 따른 해수 동결융해 저항성능 평가)

  • Song, Gwon-Yong;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Kim, Hong-Seop;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.129-130
    • /
    • 2014
  • In the case of concrete structures which have been recently exposed to the marine environment, durability is greatly reduced by the freezing-thawing action. When it is used by appropriately replacing the ground granulated blast-furnace slag(GGBS) that is a industrial by-product, the concrete structure of marine environment is known to have a durability to freezing-thawing resistance. In this experiment, micropore in accordance with a replacement ratio of GGBS was confirmed to show different results respectively. The freeze-thaw resistance was showed different aspects respectively because it is different the amount of water in the pore due to the difference of micropore. Therefore, in this study, the freezing-thawing resistance of sea water by variation of micropores of slag concrete had been evaluated.

  • PDF