• Title/Summary/Keyword: 미생물 활성화조

Search Result 5, Processing Time 0.026 seconds

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) (미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성)

  • Park, Jungyu;Tian, Dongjie;Lee, Beom;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.

Effect of Waste Activated Sludge Mixing Ratio on the Biogas Production in Bioelectrochemical Anaerobic Digestion (생물전기화학혐기소화조를 이용한 바이오가스생산에서 폐활성슬러지 혼합비의 영향)

  • Chung, Jae-Woo;Lee, Myoung-Eun;Seo, Sun-Chul;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.53-61
    • /
    • 2018
  • Anaerobic digestion (AD) is one of the most widely used process that can convert the organic fraction of waste activated sludge (WAS) into biogas. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. Bioelectrochemical, anaerobic digester was used to increase methane yield from waste activated sludge. The influence of anaerobic digestion sludge and raw sludge mixing ratio (3:7, 5:5) on methane yield and organic matter removal efficiency were explored. As a result, when the mixing ratio of bioelectrochemical anaerobic sludge was 5:5 compared with 3:7, the highest methane yields were 294.2 mL $CH_4/L$ (0.63 times increase) and 52.5% (7.5% increase), the bioelectrochemical anaerobic digester(5:5) was more stable in the pH, t otal alkalinity and VFAs, respectively. These results showed that the increase in the mixing ratio of anaerobic digestion sludge was found to be effective for maintaining the stable performance of bioelectrochemical anaerobic digester.

Ferric Chloride Addition Enhances Performance of Bioelectrochemical Anaerobic Digestion of Sewage Sludge at Ambient Temperature (제2철 이온을 이용한 상온조건에서 하수슬러지의 생물전기화학 혐기성소화 성능향상)

  • Feng, Qing;Song, Young-Chae;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.618-626
    • /
    • 2016
  • The influence of ferric ion ($Fe^{+3}$) on bioelectrochemical anaerobic digestion for sewage sludge was explored at ambient temperature ($25^{\circ}C$). Before the addition of ferric ion, the removal of volatile solids (VS) was 65.9% and the specific methane production rate was 370 mL/L/d. After the addition of ferric ion (200 ppm) to feed sludge, the bioelectrochemical anaerobic digester was more stable in the state variables including pH, alkalinity, COD and VFAs, and the VS removal and specific methane production rate were increased to 69.8% and 396 mL/L/d, respectively. However, the methane content in biogas was slightly reduced by the addition of ferric ion, indicating that the activity of planktonic anaerobic bacteria (PAB) was more improved after the addition of ferric ion. The dominances of syntrophic bacteria (Cloacamonas) and hyrolytic bacteria (Saprospiraceae, Ottowia pentelensis) in the PAB were increased by the addition of ferric ion. The addition of ferric ion improved the performance of bioelectrochemical anaerobic digestion for sewage sludge at ambient temperature.

A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor (질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구)

  • Dong, Young-tak;Seo, Dong-whan;Bae, Yu-jin;Park, Ju-seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

Comparison of Single-stage Thermophilic and Mesophilic Anaerobic Sewage Sludge Digestion (단상 고온 및 중온 혐기성 하수 슬러지의 소화 공정 비교)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.532-536
    • /
    • 2016
  • In this study, single-stage continuous anaerobic reactors to treat sewage sludge were operated under different temperature (55 and $35^{\circ}C$; $R_{TAD}$ and $R_{MAD}$) to evaluate the reactor stability and performance of the thermophilic and mesophilic anaerobic digestion. During the overall digestion, both anaerobic reactors maintained quite stable and constant pH and total alkalinity (TA) values in the range of 6.5-8.0 and 3-4 g $CaCO_3/L$, respectively. After the start-up period, $R_{TAD}$ showed 10% higher VS removal efficiency than that of $R_{MAD}$ ($R_{TAD}$; 43.3%; $R_{MAD}$ : 33.6%). Although organic acids such as acetic and propionic acid were detected in both anaerobic reactors at the start-up period, all organic acids in $R_{TAD}$ and $R_{MAD}$ were consumed at the steady state condition. Also $R_{TAD}$ showed 31.4 % higher methane production rate (MPR) than that of $R_{MAD}$ at the steady state condition ($R_{TAD}$; 243 mL $CH_4/L/d$; $R_{MAD}$ : 185 mL $CH_4/L/d$). Meanwhile, the experimental results indicated similar methane yield between $R_{TAD}$ and $R_{MAD}$.