• Title/Summary/Keyword: 미량 우라늄 분석

Search Result 20, Processing Time 0.019 seconds

Secondary Ion Man Spectrometry: Theory rind Applications in Geosciences (이차이온질량분석기의 원리와 지질학적 응용)

  • 최변각
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.222-232
    • /
    • 2001
  • Secondary ion mass spectrometry (SIMS) uses focused high-speed primary ions to produce secondary ions from sample surface that are analyzed through a mass filter. SIMS is often called as ion microprobe, since it offers a micrometer-scale spatial resolution. Although the precision and accuracy of SIMS are not as good as many conventional mass spectrometers, it has several advantages such as small sample-size requirement, high spatial resolution and capability of in-situ analysis. In the field of geochemistry/cosmochemistry, SIMS is widely used for (1) stable isotope geochemistry of H, C, O, S, etc., (2) geochronology of U/Th-bearing minerals, (3) lateral distribution of trace elements in a mineral, and (4) discovery of presolar grains and investigation of their isotopic compositions.

  • PDF

Separation of chlorine in a uranium compound by pyrohydrolysis and steam distillation, and its determination by ion chromatography (열가수분해 및 수증기증류에 의한 우라늄 화합물 중 염소 분리 및 이온크로마토그래피 정량)

  • Kim, Jung-Suk;Lee, Chang-Hun;Park, Soon-Dal;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • For the determination of chlorine in uranium compound, analytical methods by using a steam distillation and a pyrohydrolysis have been developed. The steam distillation apparatus was composed of steam generator, distilling flask and condenser etc. The samples were prepared with an aliquot of LiCl standard solution and a simulated spent nuclear fuel. A sample aliquot was mixed with a solution containing 0.2 M ferrous ammonium sulfate-0.5 M sulfamic acid 3 mL, phosphoric acid 6 mL and sulfuric acid 15 mL. The chloride was then distilled by steam at the temperature of $140^{\circ}C$ until a volume of $90{\pm}5\;mL$ is collected. The pyrohydrolysis equipment was composed of air introduction system, water supply, quartz reaction tube, combustion tube furnace, combustion boat and absorption vessel. The chloride was separated from powdered sample which is added with $U_3O_8$ accelerator, by pyrohydrolysis at the temperature of $950^{\circ}C$ for 1 hour in a quartz tube with a stream of air of 1 mL/min supplied from the water reservoir at $80^{\circ}C$. The chlorides collected in each absorption solution by two methods was diluted to 100 mL and measured with ion chromatography to determine the recovery yield. For the ion chromatographic determination of chlorine in molten salt retained in a metal ingot, the chlorine was separated by means of pyrohydrolysis after air and dry oxidation, and grinding for the sample.

Detection of Alpha Tracks of Boron by Nuclear Reaction with Neutron (중성자 핵반응에 의한 보론의 알파트랙 검출)

  • Sohn, Se Chul;Pyo, Hyung Yeal;Park, Yong Jun;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • The detection efficiencies of the several solid track detectors were investigated for the determination of boron content in aqueous solution by using the alpha muti-Radioisotope(RI) source. Polycarbonate (Lexan and CR-39) and cellulose nitrate (CN-85 and LR-115) were selected as materials for alpha track detection of boron. Alpha muti-RI source, uranium metal particles and boron standard solution were used for alpha emission. In this study, four solid track detectors(CN-85, LR-115, Lexan and CR-39) were characterized under various etching conditions as well as neutron irradiation conditions. As a result, the CN-85 was turned out to be best to provide good efficiency among the four detectors. The selected solid track detector was utilized for the determination of trace amount of boron in aqueous sample and its results were discussed in the text.

Evaluation of Radioactive Stack Air Effluents from the Advanced Fuel Science Building at KAERI (한국원자력연구원 새빛연료과학동 굴뚝방출 방사능 평가)

  • Chang, S.Y.;Kim, B.H.
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.121-126
    • /
    • 2008
  • Radioactivities of the stack air effluents from the Advance Fuel Science Building (AFSB) at KAERI have been investigated and evaluated. In this AFSB, nuclear fuels for the HANARO research reactor have been fabricated and the advanced nuclear fuels have been studied. A stack air monitoring system has been continuously operating to monitor the stack air effluents from the facility to protect the environment. As the results of the periodical radioactivity measurement and both the gamma and alpha spectrometry for the millipore filters taken from the stack air monitor from January until March 2008, a trace amount of primordial $^{40}K$ and the short-lived decay products of natural borne $^{222}Rn$ and $^{220}Rn$ have been detected. However, the radioactivities have rapidly decayed to the level below the Minimum Detectable Activity (MDA) of the counting system. Therefore, it was evaluated that no uranium isotopes have been released to the atmosphere from the stack of the AFSB at KAERI.

Separation of Fission Product Elements from Synthetic Dissolver Solutions of Spent Pressurized Water Reactor Fuels by $TBP/XAD-16/HNO_3$Extraction Chromatography ($TBP/XAD-16/HNO_3$추출 크로마토그래피에 의한 모의 사용후핵연료 용해용액 중 미량 핵분열생성물 원소의 분리)

  • Lee, Chang Heon;Choi, Kwang Soon;Kim, Jung Suk;Choi, Ke Chon;Jee, Kwang Yong;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • A study has been carried out on the extraction chromatographic separation of fission products from spent pressurized water reactor (PWR) fuels for inductively coupled plasma atomic emission spectrometric analysis. Impregnation capacity of tri-n-butyl phosphate (TBP), which is well known as an extractant in the field of uranium separation from various nuclear grade materials, on Amberlite XAD polymeric macroporous support materials was measured. Amberlite XAD-16 of which the surface area is the highest was selected as a support material because its TBP impregnation capacity was the largest in Amberlite XADs. Sorption behaviour of this TBP impregnated resin was investigated for the fission product elements using acidic solutions simulated for dissolver solutions of spent PWR fuels. The parameters affecting the performance of the separation system were optimized. The fission product elements studied excluding Pd and Ru were quantitatively recovered with the precision of less than 3.1%.

  • PDF

A Sensitive Detection of Actinide Species in Solutions Using a Capillary Cell (모세관 셀을 이용한 수용액 내 악티나이드 화학종의 고감도 검출)

  • Cho, Hye-Ryun;Park, Kyuong-Kyun;Jung, Euo-Chang;Song, Kyu-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.109-114
    • /
    • 2009
  • Absorption spectra for a quantitative analysis of actinide elements such as U(VI) and Pu(V) were measured by using a liquid waveguide capillary cell (LWCC) which has an optical path length of 1.0 meter. In order to investigate radioactive elements, a LWCC is installed in a glove box and is coupled to a spectrophotometer with optical fibers. Limits of detection (LOD) for the system were determined as 0.74 and 0.35 M with molar absorption coefficients of 8.14${\pm}$0.07 (414 nm) and 17.00${\pm}$0.16 (569 nm) $M^{-1}cm^{-1}$ for U(VI) and Pu(V) ions, respectively. The measured LOD values are about 30 times more sensitive when compared to those achievable by using a conventional quartz cell with an optical path length of 1.0 cm. As an application with an enhanced sensitivity, a quantitative analysis for micromolar concentrations of Pu(V) has been performed to decrease the uncertainty in the formation constant of the Pu(VI)-OH complex.

  • PDF

Square-Wave Voltammetric Study of Uranium(Ⅵ)-Cupferron Complex (Uranium(Ⅵ)-Cupferron 착물의 네모파 전압전류법적 연구)

  • Son, Se Cheol;Seo, Mu Yeol;Eom, Tae Yun;Choe, In Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.234-240
    • /
    • 1994
  • Square-wave voltammetric behavior for uranium(VI)-cupferron complex was studied in 0.1 M acetate buffer solution(pH5.0). The optimum condition for square-wave voltammetric analysis of uranium was also investigated. The reduction of uranium(VI)-cupferron complex was found to be irreversible and only uranium(VI)-cupferron complex was adsorbed on the electrode surface during the deposition time. Detection limit of uranium(VI) was 7.9nM(2 ppb) where the deposition time was 30sec at -0.1 V vs. Ag/AgCl. The amount of uranium(VI)-cupferron complex adsorbed on the electrode surface was ${\Gamma}_{max} = (4.9{\pm}0.3){\times}10^{-10} mol{\cdot}cm^{-2}$.

  • PDF

Uranyl Peroxide Compound Preparation from the Filtrate for Nuclear Fuel Powder Production Process (핵연료분말 제조공정 여액으로부터 Uranyl-peroxide 화합물의 제조)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.430-437
    • /
    • 1997
  • Uranyl-peroxide compound was prepared by the reaction of excess hydrogen peroxide solution and trace uranium in filtrate from nuclear fuel conversion plant. The $CO_3{^{2-}}$ in filtrate was removed first by heating more than $98^{\circ}C$, because uranyl-peroxide compound could not be precipitated by $CO_3{^{2-}}$ remaining in filtrate. The optimum condition for uranyl-peroxide compound was ageing for 1 hr after controling the pH with $NH_3$ gas and adding the excess $H_2O_2$ of 10ml/lit.-filtrate. Uranium concentration in the filtrate was appeared to 3 ppm after the precipitation of uranyl-peroxide compound, and the chemical composition of this compound was analyzed to $UO_4{\cdot}2NH_4F$ with FT-IR, X-ray diffractometry, TG and chemical analysis. Also, this fine particle, about $1{\sim}2{\mu}m$, could be grown up to $4{\mu}m$ at pH 9.5 and $60^{\circ}C$. The separation efficiency of precipitate from mother liquor was increased with increase of pH and reaction temperature. Otherwise, the crystal form of this particle showed octahedral by SEM and XRD, and $U_3O_8$ powder was obtained by thermal decomposition at $650^{\circ}C$ in air atmosphere.

  • PDF

Cation Exchange Separation and Determination of Ruthenium in a Simulated Spent Nuclear Fuel (모의 사용후핵연료에 함유된 루테늄의 양이온교환 분리 및 정량)

  • Suh, Moo-Yul;Sohn, Se-Chul;Lee, Chang-Heon;Choi, Kwang-Soon;Kim, Do-Yang;Park, Yeong-Jae;Park, Kyoung-Kyun;Jee, Kwang-Yong;Kim, Won-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.526-532
    • /
    • 2000
  • Cation exchange separation and inductively coupled plasma atomic emission spectrometric(ICP-AES) determination of ruthenium in HCl solutions were studied to quantitatively determine ruthenium in spent nuclear fuels. Ruthenium-bearing samples were dissolved with the mixed acid solution(9 : 1 mole ratio, HCl-HNO$_3$) using an acid digestion bomb. Based on the absorption spectra and ion exchange behaviour of ruthenium in hydrochloric acid media, its possible chemical species were discussed. On a cation exchange column (0.7 ${\times}$ 8.0 cm) packed with AG 50W ${\times}$ 8(100~200 mesh) and equilibrated with 0.5 M HCl, ruthenium was eluated with 0.5 M HCl while uranium was retained on the column. The established separation method was applied to a simulated spent nuclear fuel and resulted in the recovery of 98.5% with a relative standard deviation of 0.7%.

  • PDF

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.