• 제목/요약/키워드: 미동마멸부식

검색결과 3건 처리시간 0.016초

일정 변위 진폭조건에서의 은도금한 커넥터의 미동마멸부식 거동 (Fretting Corrosion Behavior of Silver-Plated Electric Connectors with Constant Displacement Amplitude)

  • 오만진;김민정;김택영;강세형;김호경
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.99-107
    • /
    • 2014
  • Fretting corrosion tests are conducted with a constant displacement amplitude using silver-plated brass coupons to investigate the effect of contact pressure on fretting corrosion. Three behaviors are identified based on the change in electric resistance and friction coefficient during the fretting test period, and the identified behaviors are dependent on the magnitude of the applied load. The failure cycle ($N_f$) with an electric resistance of 0.1 D cannot be achieved due to the adhesion behavior of the metal and metal contact under the higher applied load of 0.45 N. This suggests that an average contact pressure higher than 159 MPa for the silver-coated connector is desirable to gain an almost infinite lifetime. The relationship between the electric contact resistance (R) and the average contact pressure (p) can be written as $p=106.2{\times}{\Omega}^{-1.5}$.

주석 도금한 전기 접촉부의 미동마멸 부식에 대한 윤활유의 영향 (Effects of Lubricant on Fretting Corrosion of Tin-Coated Electric Contacts)

  • 김광수;오만진;한동운;김호경
    • Tribology and Lubricants
    • /
    • 제32권3호
    • /
    • pp.88-94
    • /
    • 2016
  • We conduct a series of fretting corrosion tests on tin-coated electric contact to evaluate the effects of lubricant on fretting corrosion behavior. We perform these tests with a constant contact force at 25℃ 50℃, 75°C, and 100℃. In the tests with a span amplitude of 30 μm, we could not determine the conventional behavior of the first, second, and third stages of the change in electric resistance during fretting corrosion and observed that the contact resistance continuously increases with the cycles. This behavior is due to the fact that the generation of oxides on the tin-coated contact is controlled and stabilized by the presence of lubricant. SEM observations on samples with a span amplitude of 77 μm at all testing temperatures confirm that there is less oxide debris on the fretting damaged surface. Hence, for tin-coated electric connector, the effect of lubrication on the lifetime of the electric contact increases as the fretting span decreases and testing temperature increases, compared to those for connector without lubricant. Especially, for a specimen with a span amplitude of 30 μm at 100℃, the increment in contact lifetime due to lubricant is found to be more than 20 times, compared to that without lubricant.

온도변화에 따른 주석 도금한 전기 커넥터의 미동마멸 부식 거동 (Fretting Corrosion Behavior of Tin-plated Electric Connectors with Variation in Temperature)

  • 오만진;강세형;이만석;김호경
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.146-155
    • /
    • 2014
  • In this study, we conduct fretting corrosion tests on tin-plated brass coupons to investigate the effect of temperature on fretting corrosion for various span amplitudes. We prepare a coupled fretting corrosion specimens using a tin-plated brass coupon with a thickness of $10{\mu}m$. One specimen is a flat coupon and the other specimen is a coupon with a protuberance in 1 mm radius, which is produced using 2 mm diameter steel ball. We conduct fretting corrosion tests at $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$ by rubbing the coupled coupons together at the contact between the flat and protuberance coupons. We measure electric resistance of the contact during the fretting corrosion test period. There is increase in resistance with fretting cycles. It is found that rate of increase in electric resistance becomes faster with increase in testing temperature. Magnitude of friction coefficient increases with fretting span amplitudes. And, change in friction coefficient becomes desensitized to the increment in span amplitude. Assuming that failure cycle is the cycle with an electric resistance of $0.01{\Omega}$, we find that failure lifetime ($N_f$) decreases with increase in testing temperature. Furthermore, based on the assumption that the damage rate of the connector is inversely related to the failure cycle, we calculate the activation energy for fretting damage to be 13.6 kJ/mole by using the Arrhenius equation. We propose a method to predict failure cycle at different temperatures for span amplitudes below $30{\mu}m$. Friction coefficients generally increase with increase in span amplitude and decrease in testing temperature.