• Title/Summary/Keyword: 물 제트

Search Result 100, Processing Time 0.023 seconds

Effect of Weber Number and Momentum Flux Ratio on Macroscopic Characteristics of Spray from a Coaxial Porous Injector (웨버수 및 운동량 플럭스비에 따른 동축형 다공성재 분사기의 거시적 분무특성)

  • Kim, Do-Hun;Seo, Min-Kyo;Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • The gas jet from a coaxial porous injector for two-phase flows is discharged from the porous surface, which encloses the center liquid jet, and the gas and liquid jet interact with each other physically. The wall injected gas jet transfers the radial momentum effectively while the radial gas jet develops to axial jet, and the performance of atomizing and mixing can be improved. In this study, the Weber number and the ratio of momentum flux were controlled by changing the gas injection area and the mass flow rate of the gas jet, and a study on the spray characteristics at the cold-flow test using water and air simulant was performed. It is concluded that the radial momentum transfer concept of a coaxial porous injector gives a positive effect on the atomization and mixing of the two-phase spray.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.

Spray Characteristics of Jet According to Position of Injector Hole in Crossflow (횡단유동내 인젝터 홀의 위치에 따른 제트의 분무 특성)

  • Choi, Myeung Hwan;Shin, Dong Soo;Radhakrishnan, Kanmaniraja;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.88-96
    • /
    • 2018
  • Effects of injector position and momentum flux ratio on a vertical jet in a cross-flow field are qualitatively studied and displayed using air and water. The position of the injector hole and the momentum flux ratio is changed and image visualization is performed using a shadowgraph technique and a high-speed camera. The visualized images are compared to find differences in spraying using density gradient magnitude image. It is observed that, as the x/d of the apparatus increases, the jet break-up height decreases. When x/d is 0, the spray reaches the bottom and ceiling at any momentum flux ratio.

Development of Charging Container for Cutting Steel Plate and Evaluation of its Cutting Performance (강재 절단을 위한 장약용기의 개발과 절단 성능 평가)

  • Park, Hoon;Min, Gyeong-Jo;Cho, Sang-Ho;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.36 no.2
    • /
    • pp.10-18
    • /
    • 2018
  • The shaped charge is used in explosive demolition of steel frame structure, but it was often not used because it was limited to use or impossible to supply at domestic and foreign. To solve this problem, we needed a device that could generate matal jets using industrial explosive. In this study, we made a charging container, which metal jets were generated when explosives were detonated. Cutting performance tests were carried out to evaluate the effect of cutting of a charging container on a steel plate of 25mm thickness. In addition, we compared the results between the numerical simulation of penetration process and cutting performance tests and then was evaluated a cutting performance for steel plates of 35mm and 70mm thickness.

Concept Design of Hydro Reactive Solid Propellant for Underwater High Speed Ramjet Engine System (수(水)반응성 고체추진제를 이용한 수중고속램제트엔진 시스템 개념 설계)

  • Chae Jae-Ou;Sim Ju-Hyen;Kwak Yong-Whan;Koo Hyung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.121-131
    • /
    • 2005
  • For thrust motion of high speed underwater torpedo the special hydro reactive fuels that burns in vapor water and water supply from aboard is used. The main component of this hydro reactive fuel is the powder of active metal (Mg, Al) that can burn in water vapor with large heat generation in the rocket combustion chamber. The thermodynamic analysis of combustion properties of the burning of the particles of these active metal in the vapor water have been carried out. The conception for the possible content variants of the hydro reactive fuels have been discussed using the geometrical and thermodynamic combustion conditions with the basic recommendation for contents of designed hydro reactive fuels in future.

  • PDF

A Study on the Correction of Error Induced by FTOD for Investigation of a Metal Jet Behavior (금속제트 거동 분석에서의 FTOD 오차 보정에 관한 연구)

  • Joo, Jaehyun;Lee, Heonjoo;Kim, Siwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.577-584
    • /
    • 2014
  • In this study, the behavior of a shaped charge projectile's metal jet was analyzed using flash radiography. The projectile was installed horizontally to observe the behavior of jet for enough time. While the X-ray tube heads are fixed at one point, the behavior range of the jet is wide in this experimental set up, therefore the angle between the X-ray tube heads and the jet tip is changed continuously as jet moves forward. Jet particle's locations calculated from the X-ray films become different from their real positions under this situation because of the film to object distance(FTOD) and correction for error by FTOD is required. In this study, a method was devised to correct the error by FTOD and this was applied for the investigation of jet behavior of a 70 mm caliber's shaped charge.

Numerical Models for the Surface Discharge of Heated Water : Comparative Evaluation of Jet Integral Models. (표면온배수 수치모형 : 제트적분모델의 비교평가)

  • 최흥식;이길성
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.487-497
    • /
    • 1990
  • The qualitative and quantitative prediction for the dispersion of thermal discharge from nuclear / fossil power plant, steel works etc. has significant roles for the cooling system. Design and environmental management. In this study, the several important physical properties for the behavior of a thermal discharge with strong turbulent and buoyant effects are described. The comparative evaluation between MIT and PDS models is carried out, which have the different model structures. In general, MIT and PDS models are commonly used to calculate the thermal discharge behavior with considering the ambient current and the angle of jet in an unstratified water body. The simulated results by these models have great discrepancies due to the different assumptions in modling.

  • PDF

Effect of Damkohler Number on Vortex-Heat Release Interaction in a Dump Combustor (덤프 연소기내의 와류-열방출의 관계에 대한 Damkohler 수의 영향)

  • Yu Kenneth H;Yoon Youngbin;Ahn Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.137-140
    • /
    • 2004
  • Oscillating heat release associated with periodic vortex-flame interaction was investigated experimentally. Turbulent jet flames were stabilized with recirculating hot products in a dump combustor, and large-scale periodic vortices were imposed into the jet flame by acoustic forcing. Forcing frequencies and operating parameters were adjusted to simulate unstable combustor operation in practical combustors. The objectives were to characterize vortex-heat release interaction that leads to unwanted heat release fluctuations and to identify the proper fuel injection pattern that could be used for actively suppressing such fluctuations. Phase-resolved CH* chemiluminescence and schlieren images were used as diagnostic tools. The results were compared at corresponding phases of vortex shedding cycle.

  • PDF

A Study on Impact of an Adjacent Structure by a Rocket Plume (유도탄 화염이 인접 구조물에 미치는 영향 연구)

  • Yang, Young-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.488-494
    • /
    • 2014
  • Rocket Plumes can cause serious damage to launch vehicles and adjacent structures. This paper describes the impact of an adjacent structure by a rocket plume. Each parameter related with dynamic behavior of a missile is modeled with probabilistic distributions of variables. Flyout analyses of initial behavior of a vertically launched missile are performed using Monte-Carlo simulation and flow-motion analyses were conducted by using CFD. In this way, when a missile is fired by a ship, the impact of an adjacent structure by a rocket plume was analyzed.

Analysis on the Flow Field Around a Hydrofoil with Surface Blowing (표면 유체분출 수중날개의 유동해석)

  • Sang-Woo Pyo;Jung-Chun Suh;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.21-27
    • /
    • 1999
  • A low order panel method based on the perturbation potential is applied for prediction of performance of blown-flap rudders. In order to improve the solution behavior at the large angle of attacks, the geometry of the trailing wake sheet is computed by aligning freely with the local flow. The effect of the wake sheet roll-up is also included with use of a high order panel method. The flow in the gap between the main component and the flap of the rudder is modeled as Couette flow. The effects of the gap and the flow jet are included in application of a kinematic and a dynamic boundary condition on the inlet and the outlet of the gap as well as on the flap and the wake. The results with the present method are compared with existing experimental data. The method is shown to be capable of determining accurately the flow characteristics even for large flap angles.

  • PDF