• Title/Summary/Keyword: 물 재활용

Search Result 567, Processing Time 0.029 seconds

A Model for Lifecycle CO2 Assessment of Building Structures Considering the Mixture Proportions of Concrete (콘크리트 배합설계를 고려한 구조물의 전과정 CO2평가 모델)

  • Yang, Keun-Hyeok;Seo, Eun-A
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.201-210
    • /
    • 2014
  • The present study proposes a phased model to assess the lifecycle $CO_2$ amount of concrete structures. The considered system boundary is from cradle to recycling, which includes constituent material, transportation, batching and mixing in ready-mixed concrete plant, use and demolition of structure, and crushing and recycling of demolished concrete. The $CO_2$ uptake of concrete by carbonation during lifetime (40 years) of a structure and the recycling life (20 years) after demolition is estimated using a simple approach generalized to predict the carbonation depth from the surfaces of concrete element and recycled aggregates. Based on the proposed phased model, a performance evaluation table is realized to straightforwardly examine the lifecycle $CO_2$ amount of concrete structures. The proposed model demonstrates that the contribution of ordinary portland cement (OPC) to lifecycle $CO_2$ emission of the concrete structure occupies approximately 85%. Furthermore, the $CO_2$ uptake is estimated to be approximately 15~18% of the lifecycle $CO_2$ emissions of concrete structures, which corresponds to be 19~22% of the emissions from OPC production. Overall, the proposed $CO_2$ performance table is expected to be practically useful as a guideline to determine the $CO_2$ emission or uptake at each phase of concrete structures.

사용후연료의 건식처리 발생 hull 폐기물의 처리(II)

  • Kim, Jun-Hyeong;Kim, In-Tae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.177-177
    • /
    • 2009
  • 사용후 핵연료의 건식처리 시 핵연료 다발을 절단하여 voloxidation 즉 휘발산화처리를 하면 고온에 의해 분리가 가능한 핵분열생성물의 분리와 우라늄의 산화에 의한 부피팽창으로 핵연료가 쪼개져서 입도가 작아지고 또한 핵연료가 피복재에서 쉽게 박리되게 된다. 그 결과 폐기물 처리 시에 발열핵종으로 폐기물의 저준위화시에 분리가 요망되는 Cs-137이 분리되는 장점이 있어 습식 재처리에 있어서도 바람직하다. 건식처리에 있어서는 voloxidation 으로 처리된 피복재에는 금속 지르코늄에 불순물로 함유된 우라늄의 의한 방사화 생성물과 피복재 표변에 부착/침투한 방사화 생성물이 방사능을 갖게 된다. 이러한 부착된 TRU 잔류물은 통상 1% 미만으로 알파핵종의 방사능이 원자로에서 배출시에는 고준위 기준치의 약 100배 수준이었다가 30년 냉각후에는 약 1/10 수준으로 저준위화 된다. 지르코늄 금속중에 불순물로 함유된 우라늄의 방사화로 생기는 방사능은 고준위 기준치의 10% 를 넘지 않아서 피복재의 저준위화시에 고려할 필요가 없다. 발생열은 방출시에 고준위 기준치의 약 30 배 수준에서 5년 냉각후에는 기준치 미만이 되며 30년후에는 1/8000 정도로 저준위화 된다. 사용후 핵연료를 습시처리시에 발생하는 고준위 폐기물 중 약 1/4 가 피복재 (hull) 임을 고려하면 피복재의 저준위화는 사용후 연료의 건식처리에 있어서도 필수적인 과정이다. 특히 미국의 고준위 폐기물 처분장 Yucca Mt.의 포기와 우리의 고준위 폐기불 처분장이 공론화되는 싯점에서 저준위화는 매우 필요한 기술이다. 피복재는 방사성 물질의 침투두께가 0.01mm 미만이 대부분으로 저준위화에는 표면제염에 의한 저준위화가 주로 연구되어왔다. 표면제염에 의한 저준화는 이온 빔, laser에 의한 방법, dry ice 분사에 의한 방법이 시도되었다. 염소기체를 이용하여 지르코늄의 산화막을 제거하고자 하였으나 이 산화막이 안정적이어서 표변의 연마, 아크릴 칼의 사용, 표면을 눌러서 처리하는 등 전처리하여서 염소기체 반응에 의한 표면제거 실험이 가장 효과적임이 실험적 결과이었다. 이러한 전처리로 방사능을 1/100 수준으로 낮춘다고 하더라도 지르코늄 금속중에 불순물로 함유된 우라늄의 방사화에 의해 중저준위 폐기물의 범주에서 벗어나지 않으므로 재활용에는 제한이 있다. 또한 전처리(표면제염)하여 분리되는 고준위는 다른 고준위 염폐기물과 함께 처리하여 발열 핵종을 제거하면 중저준위화가 가능하다. 저준위화 된 hull폐기물에는 지르코늄 금속에 불순물로서 함유되어있는 우라늄에 의한 방사능을 갖는데 이들의 제거나 분리는 지르코늄 합금 피복재 원료물질에 불순물로 함유하는 우라늄의 함량을 낮추는 것과 유사한 문제이다. 현재까지 지르코늄합금 피복재에 우라늄이 불순물로 함유된 것을 사용함으로 원자로내에서 방사화되어서 방사능을 갖게 되는 것은 피할 수가 없다. 따라서 저준위화 처리된 피복재는 장기 보관으로 방사능을 감쇠시켜서 재활용하도록 한다. 처리 방법으로는 초고압 압축저장, 시멘트 고화, 합성암석에 의한 고화법 등으로 장기간 보관 후에 금속으로서 재활용한다.

  • PDF

Applicable Building Range for the Introduction of the Building Separation and Dismantling System (건축물 분별해체 제도 도입을 위한 적용 대상 건축물 범위 설정)

  • Park, Ji-Sun;Song, Tae-Hyeob;Choi, Dong-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.189-196
    • /
    • 2013
  • In order for efficient recycling and eco-friendly treatment of construction waste, there is a need to apply a building separation and dismantling technique early on in the stage of waste generation. This study was conducted to analyze the relevant domestic circumstances and propose the applicable range of buildings in order to introduce a building separation and dismantling system to Korea. For this purpose, related policies and systems implemented overseas and the current situation of buildings were examined, and the workability of separation and dismantling of buildings according to their uses was compared. Also, the economic impact of the separation and dismantling system was examined and a survey was conducted, seeking the opinions of the relevant companies regarding the need for the system and the selection criteria for eligible buildings. Based on the results, it was determined that it would be impossible to apply the separation and dismantling system to all buildings in Korea, considering the current technical power and economic situation, and that the system should be introduced in phases, according to the building classification determined based on floor area and use, as the cost may vary depending on a number of variables including the level of difficulty and field conditions.

Chemical Recycling Technology from Polyester Wastes (폴리에스터 폐자원의 화학적 재활용기술)

  • Han, Myung-Wan;Kang, Kyung-Suk;Song, Jae-Kyung
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • This paper reviews recent technologies for recycling poly (ethylene terephthalate) wastes. Wide application and non-biodegradability of the PET creates huge amounts of waste and disposal, leading to an environmental problem and economic loss. Chemical recycling can be a promising technology to deal with these problems by converting the waste into useful feedstock material for polyester production. Chemical recycling of polyethylene terephthalate are processes where the PET polymer chain is destructed by the impact of glycol (MEG) causing glycolysis, methanol causing methanolysis or water causing hydrolysis. After intensive purification polyester oligomers or the monomers MEG, dimethyl telephthalate (DMT) or purified terephthalic acid (PTA) are received which are re-used to produce polyester products.

Studies on Recycling of Waste Polyurethane ( II ) (폐우레탄고무 재활용에 관한 연구 (II))

  • Lee, Hyung-Kyu;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.227-235
    • /
    • 2000
  • This study focused on the recycling technology and application of waste polyurethane scrap($5{\sim}7mm$) and waste urethane form from the footware scrap. Firstly we suggest the waste polyurethane can be used as a component of medium for hydroponic rose culture. Secondly, recycled thermoplastic polyurethane(RTPU) was produced and blended it with high impact polystyrene(HIPS). And also, in order to extend application of recycling field, the former was produced with adding the amine foaming agent to RTPU/HIPS alloy. The main purpose of this study is to diverse of the recycling of the waste polyurethane.

  • PDF

Developing Practical Recycling methods of FRP Boats (FRP선박의 실용적 재활용 방법 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.167-172
    • /
    • 2007
  • Since 1990s, these many researchers have been fully involved in developing recycling methods for FRP boats. There are four basic classes of recycling covered in the literature. the first is "Mechanical recycling" which involves shredding and grinding of the scrap FRP in a new product. Despite of the safety hazards, mechanical recycling is one of the simpler and more technically proven methods. Recent researchers should be more interested in these methods. It is fact that most of FRP wastes are depended on incineration or reclamation. Because it Is made up of reinforced fiber glass, it is very difficult to break into pieces. By the disposing of waste FRP this way, it also occurs secondary problem such as air pollution and unacceptable noise. This study is to propose a new method which is efficient and environment friendly waste FRP regenerating.

  • PDF

Present Condition of End-of-Life Vehicles & SLF/ASR Recycling in Europe (EU의 ELVs & SLF/ASR 재활용 현황)

  • Baek, Sang-Ho;Jeon, Ho-Seok;Lee, Eun-Seon;Choi, Hee-Kyung;Kim, Jae-Geung
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.58-68
    • /
    • 2014
  • The statistics showed that about 1 billion automobiles were registered and about 40million ELVs occurred on the world in 2010. So all advanced countries including EU had plan to increase the ELVs recycling rate up to 95% of total by 2015. The Korean government also established a target for raising up to 95% of ELVs recycling rate according to 'Act on the Resource Circulation of Electrical and Electronic Equipment and Vehicles'. Before being satisfied with the requirement of recycling of ELVs however, the problem is issued on the scraps of plastic and non-ferrous metals which are now being abandoned and reclaimed with no adequate reuse. Therefore, as a part of preceding investigation on the present state of ELVs recycling in the world, this preliminary investigation study was carried out focusing on the state of EU's disposal and management regulations of ELVs and SLF/ASR including the world trend of disposal and management regulations of ELVs and SLF/ASR.

An Investigation on Recycling of Prestressed Concrete Sleepers (프리스트레스트 콘크리트 침목의 재활용 기술에 대한 고찰과 기초 실험)

  • Jae-Young Lee;Uijun Lee;Jaewon Lee;Sunmo Yang;Seongwoo Gwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.316-323
    • /
    • 2023
  • The need for sustainable waste management has intensified the focus on recycling prestressed concrete sleepers used in railways. Given their high volume and environmental impact at the end of their service life, finding efficient recycling methods is crucial. This study explores current recycling approaches, particularly mechanical techniques, evaluating their advantages, limitations, and economic feasibility. Finally, an example of mechanical recycling was performed. The analysis results of the resulting recycled aggregates are suggested. Then, the non-cement concrete mixtures with recycled aggregates were designed, and their strength development was analyzed.

A Study on Improvement in Quality of the Paper Packaging Material and Structure -Focusing on EPR Items- (종이팩의 재질·구조 개선을 위한 연구 -EPR 대상 품목을 중심으로-)

  • Song, Kihyeon;Ko, Euisuk;Cho, Soohyun;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • The carton for liquid products are divided into 'gable top carton' and 'aseptic carton'. Currently, these packages are being recycled in the toilet tissue manufacturing process. The recycling of the carton aluminium laminate is the most important problem facing the recycling procedure of the carton packages due to the reduction in quality of recycled materials. The polymer structure with synthetic resins being used mainly in beverage packaging is also one of the important factors for the procedure for its recycling. The objective of this study was to investigate the package material and structure of the carton for liquid products through marketing research and suggest the supplementation in the work processes of production, use, and recycling. The results represent to improve the recycling profit and the quality of recycled materials when a laminated aluminium of carton for liquid products is replaced to the transparent polymer film. The improvement of the sorting and recycling process may help their recycling efficiencies. In addition, the limited use of synthetic resin molded packaging and increase of wood-pulp collection rate will provide the improvement of the recycling profit and the quality of recycled materials.

  • PDF

Study on Recycling of Incombustion Materials from MSWI Fluidized Bed Incinerator Ash (생활쓰레기 유동상(流動床) 소각로(燒却爐) 불연물(不燃物)의 재활용에 관한 연구(硏究))

  • Choi, Woo-Zin;Park, Eun-Kyu;Kang, Seung-Kyun
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • The total amount of fluidized bed incinerator ash, i.e. incombustion materials generated from the municipal solid waste incineration(MSWI) in Korea was approximately 14,000 tons in 2006. Most of the ash after ferrous metal separation is finally discard to the landfill sites. In the present work, possibility for recycling of the ash is studied to utilize the ash as raw materials for ceramic products. Incombustion materials obtained from the two different incinerators were used to recover the raw materials by applying the magnetic separation and screening process to remove metallic particles. The raw materials show relatively low heavy metals content obtained from the KSLP leaching tests. The ceramic products were prepared by mixing the clay with the various amounts of the raw material. The physical properties, i.e. shrinkage rate, absorbancy and compressive strength of the ceramic products sintered at $1,000^{\circ}C$ and $1,050^{\circ}C$, respectively were improved by increasing the addition amounts of the incinerator ash. Based on the leaching tests the ceramic products also be satisfied with the standard limits on the leachability of heavy metals because most of the metallic materials are effectively removed from the incombustion materials by appling the separation processes.