• Title/Summary/Keyword: 물흡수선량 교정인자

Search Result 5, Processing Time 0.019 seconds

Chamber to Chamber Variations of a Cylindrical Ionization Chamber for the Calibration of an $^{192}Ir$ Brachytherapy Source Based on an Absorbed Dose to Water Standards (물흡수선량 표준에 기반한 $^{192}Ir$ 근접치료 선원 교정 시 원통형 이온함의 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Chan-Hyeong;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • This work is for the preliminary study for the calibration of an $^{192}Ir$ brachytherapy source based on an absorbed dose to water standards. In order to calibrate brachytherapy sources based on absorbed dose to water standards using a clyndirical ionization chamber, the beam quality correction factor $k_{Q,Q_0}$ is needed. In this study $k_{Q,Q_0}s$ were determined by both Monte carlo simulation and semiexperimental methods because of the realistic difficulties to use primary standards to measure an absolute dose at a specified distance. The 5 different serial numbers of the PTW30013 chamber type were selected for this study. While chamber to chamber variations ran up to maximum 4.0% with the generic $k^{gen}_{Q,Q_0}$, the chamber to chamber variations were within a maximum deviation of 0.5% with the individual $k^{ind}_{Q,Q_0}$. The results show why and how important ionization chambers must be calibrated individually for the calibration of $^{192}Ir$ brachytherapy sources based on absorbed dose to water standards. We hope that in the near future users will be able to calibrate the brachytherapy sources in terms of an absorbed dose to water, the quantity of interest in the treatment, instead of an air kerma strength just as the calibration in the high energy photon and electron beam.

  • PDF

The Study on the Use of a Cylindrical Ionization Chamber for the Calibration of a 6 MeV Electron Beam (6 MeV 전자 빔의 교정에 원통형 이온함의 사용에 관한 연구)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Choi, Jin-Ho;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • The standard dosimetry systems based on an absorbed dose to water recommend to use a planeparallel chamber for the calibration of such a low-megavoltage electron beam as a nominal energy of 6 MeV. For this energy ranges of an electron beam a cylindrical chamber should not be used for the routinely regular beam calibration, but the feasibility of the temporary use of a cylindrical chamber was studied to give temporary solutions for special situations users meet. The PTW30013 chambers and the electron beam quality of $R_{50}=2.25\;g/cm^2$ were selected for this study. 10 PTW30013 chambers, a cylindrical type of chamber, were calibrated in KFDA, the secondary standards dosimetry laboratories, and given the absorbed dose-to-water calibration factors, respectively. A "temporary" $k_{Q,Q_0}$ for each chamber were calculated using the absorbed dose determined by a cross-calibrated planeparallel chamber, with the result of an average 0.9352 for 10 chambers. This value for PTW30013 chamber was used to determine an absorbed dose to water at the reference depth. The absorbed doses determined by PTW30013 chambers were in an agreement within 2% with that by ROOS chamber. In a certain situation where a cylindrical chamber be used instead of a planeparellel chamber, the value of 0.9352 might be useful to determine an absorbed dose to water in the same beam quality of electron beam as this study.

  • PDF

Chamber-to-chamber Variations in the Same Type of a Cylindrical Chamber for the Measurements of Absorbed Doses (흡수선량 측정 시 동종 원통형 이온함에서 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.120-125
    • /
    • 2010
  • For the measurements of an absorbed dose using the standard dosimetry based on an absorbed dose to water the variety of factors, whether big, small, or tiny, may influence the accuracy of dosimetry. The beam quality correction factor ${\kappa}_{Q,Q_0}$ of an ionization chamber might also be one of them. The cylindrical type of ionization chamber, the PTW30013 chamber, was chosen for this work and 9 chambers of the same type were collected from several institutes where the chamber types are used for the reference dosimetry. They were calibrated from the domestic Secondary Standard Dosimetry Laboratory with the same electrometer and cable. These calibrated chambers were used to measure absorbed doses to water in the reference condition for the photon beam of 6 MV and 10 MV and the electron beam of 12 MeV from Siemens ONCOR. The biggest difference among chambers amounts to 2.4% for the 6 MV photon beam, 0.8% for the 10 MV photon beam, and 2.4% for the 12 MeV electron beam. The big deviation in the photon of 6 MV demonstrates that if there had been no problems with the process of measurements application of the same ${\kappa}_{Q,Q_0}$ to the chambers used in this study might have influenced the deviation in the photon 6 MV and that how important an external audit is.

Determination of TRS-398 Quality Factors for Cs-137 Gamma Rays in Reference Dosimetry (Cs-137 감마선의 선량측정을 위한 TRS-398 선질인자 결정에 관한 연구)

  • Kang, Sang Koo;Rhee, Dong Joo;Kang, Yeong Rok;Kim, Jeung Kee;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.123-127
    • /
    • 2014
  • The Cs-137 irradiator is widely used to irradiate biological samples for radiobiological research. To obtain the accurate outcomes, correct measurements of the delivered absorbed dose to a sample is important. The IAEA protocols such as TRS-277 and TRS-398 were recommended for the Cs-137 reference dosimetry. However in TRS-398 protocol, currently known as the most practical dosimetry protocol, the quality factor ($k_{Q,Q_0}$) for Cs-137 gamma rays is not suggested. Therefore, the use of TRS-398 protocol is currently unavailable for the Cs-137 dosimetry directly. The calculation method previously introduced for high energy photon beams in radiotherapy was used for deriving the Cs-137 beam qualities ($k_{Q,Q_0}$) for the 15 commercially available farmer type ionization chambers in this study. In conclusion, $k_{Q,Q_0}$ values were ranged from 0.998 to 1.002 for Cs-137 gamma rays. These results can be used as the reference and dosimeter calibrations for Cs-137 gamma rays in the future radiobiological researches.