저조도 환경에서 카메라로 영상을 획득하기 위해 일반적으로 가시광 플래시를 사용하거나 장노출 기법을 사용하게 된다. 그러나 가시광 플래시를 사용할 때 플래시 광에 의한 색 왜곡이나 적목 현상, 눈부심에 의한 거부감을 발생시킨다. 또한 장노출을 사용하게 되면 물체의 움직임에 의한 흔들림 현상이 발생하게 된다. 따라서 최근에는 이러한 단점을 극복하고, 저조도 환경에서 고화질의 영상을 획득하기 위하여 멀티 스팩트럴 플래시(Multi-spectral flash image)를 이용하여 영상을 획득하는 방법이 소개되었다. 이 방법은 가시광과 UV/IR스펙트럼의 다섯 채널을 이용하여 가시광영상의 색 정보와 UV/IR 스팩트럼 영상의 세부정보를 최적화하여 영상을 획득하는 방법이다. 하지만, 픽셀 기반의 최적화 과정에 있어 색 왜곡과 다른 잡음을 발생시키게 된다. 따라서 본 논문에서는 이러한 색 왜곡과 잡음을 개선하기 위해 영역 기반의 가중치 맵을 최적화 방법에 적용하여 색 왜곡을 개선하는 알고리즘을 제안한다. 먼저, 영상에 대하여 Canny 에지 검출 방법을 사용하여 영상의 윤곽을 검출하였다. 이를 가중치 맵으로 최적화방법에 적용함으로, 세부 영역에 대하여 UV/IR 플래시 영상의 정보에 가중치를 부여하고, 평탄한 영역에 대하여 가시광 영상의 색 정보를 가중치를 부여하여 색 왜곡을 개선하였다. 제안한 방법을 평가하기 위하여 실험을 통하여 제안한 방법과 이전방법을 비교하였고, 객관적 평가와 주관적 평가 모두 제안한 방법이 우수한 성능을 나타내었다.
최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통 안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만장의 대형차, 소형차, 중형차 별 적재 불량 차량과 일반차량으로 구분 된 데이터 셋 중 종류별로 제공되는 CCTV, 블랙박스, 카메라 시점의 적재 불량 차량 데이터 셋을 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.
본 논문은 MPEG-4와 같이 객체 및 내용 기반 영상 부호화에 필요한 동영상의 자동 영역 분할 알고리즘을 제안한다. 통계적 가설 검증(statistical hypothesis test)을 사용하여 영상 시퀀스내에 포함된 비디오 객체들(video objects)을 움직임 물체(moving objects)와 배경 (background)으로 자동 분할하는 새로운 영상 분할 알고리즘을 제안한다. 기존 방법들이 두 개의 연속된 영상을 사용하는 반면에, 제안된 방법은 3개의 연속된 영상을 사용하여, 2개의 차영상의 평균값을 비교하여 가설검증을 행함으로써 잡음에 강한 특성을 나타낸다. 그리고 제안된 방법은 기존 방법과는 달리 참분산(true variance)을 사전에 알고 있을 필요가 없는 장점을 갖고 있다[18]. 또한 시간정보만을 이용한 변화 검출 방법의 문제점인 불규칙하고 부정확한 영역의 경계를 공간정보를 이용하여 보정하는 새로운 방법을 제안한다. 시험 결과에서 주어진 것처럼 제안된 시공간정보를 이용한 영상 분할 알고리즘이 시각적으로 의미있는 분할 결과를 제공함을 알 수 있고, 정확한 영역 경계를 추출할 수 있기 때문에 MPEG-4와 같은 객체 기반 영상 부호화에 적용할 경우에 영역 경계에서 상당히 우수한 재생 화질을 얻을 수 있다.
미소 단위로 이동하는 물체의 이동 거리를 측정하기 위한 정밀 측정기기, 반도체 제조 장치, 공작기계 등의 위치 제어는 매우 중요한 요건이며, 이러한 장치들의 이동거리 측정에 대한 정확도는 전체 시스템의 성능을 좌우하게 된다. 따라서 정밀기기에서 이동 거리를 고정밀도로 측정할 수 있는 센싱 디바이스가 요구되며, 여기에는 레이저 간섭계의 분해능에 준하는 분해능을 갖고, 경제성 및 디지털 인터페이스에 대한 장점을 갖는 광학식 엔코더가 사용될 수 있다. 본 논문에서는 이동 거리를 측정하기 위해 회절 원리를 기초로한 고분해능 및 디지털 인터페이스가 용이한 간섭계형 리니어 스케일을 실험적으로 구성하였다. 그리고 이 리니어 스케일에서 발생된 간섭 신호는 제작된 광 검출기와 신호처리 회로를 통해 디지털화하였다. 그 결과 실험적으로 구성된 간섭계형 리니어 스케일은 스케일의 이동에 대하여 어떠한 분주 회로도 추가하지 않고, 단지 쉬운 광학적 구성으로 0.5$\mu\textrm{m}$의 분해능을 얻었다.
다제약 접근기반 Optical Flow 평가기술이 이동 물체의 인식에 자주 이용되고 있다. 본 논문은 열차의 자동 운전 중 플랫폼에서 승객의 탑승시도를 영상인식을 통해서 감시할 수 있는 방법에 대하여 제안한다. CCTV를 통하여 입력된 영상을 차영상을 통하여 영상의 변화를 감지하고, 변화하는 영상에 대하여 Optical Flow를 수행, 영상에서 승객의 이동 방향성을 파악할 수 있다. 플랫폼에 사람이 없을 때의 영상과 사람이 이동 중인 영상을 비교하면 사람이 이동한 부분에 대한 차 영상을 추출할 수 있다. 추출된 영상을 통하여 Edge검출을 하게 되면 이동하는 사람이 있을 경우 사람 형상이 추출이 되고, 추출된 사람 형상의 개수와 무게 중심을 저장한다. 추출된 사람 형상과 다음 영상의 사람 형상의 Optical Flow를 수행하면 이동 거리만큼 사람 형상의 이동 방향성을 파악할 수 있고, 이동성이 파악된 사람의 이동 방향이 선로 방향으로 가는지를 감시할 수 있다. CCTV의 방향은 열차의 선로에 수직한 방향을 촬영하여 화면의 오른쪽 또는 왼쪽에 열차가 위치할 수 있게 한다. 본 논문을 통하여 CTBC 신호시스템에서 열차가 자동운전 할 경우 사람의 이동방향을 파악하여 탑승을 시도하는 승객의 유무를 파악, 열차의 출입구 개폐에 이용할 수 있다. 시뮬레이션 결과 플랫폼에 대기 중인 정확한 승객의 수는 확인이 어려웠지만 탑승 시도 여부는 확인 할 수 있음을 확인하였다.
최근 다양한 방송 및 영상 분야에서 사람의 행동을 인식하여는 연구들이 많이 이루어지고 있다. 영상은 다양한 형태를 가질 수 있기 때문에 제약된 환경에서 유용한 템플릿 방법들보다 특징점에 기반한 연구들이 실제 사용자 환경에서 더욱 관심을 받고 있다. 특징점 기반의 연구들은 영상에서 움직임이 발생하는 지점들을 찾아내어 이를 3차원 패치들로 생성한다. 이를 이용하여 영상의 움직임을 히스토그램에 기반한 descriptor(서술자)로 표현하고 학습기반의 판별기로 최종적으로 영상내에 존재하는 행동들을 인식하였다. 그러나 단일 판별기로는 다양한 행동을 인식하기에 어려움이 있다. 따라서 이러한 문제를 개선하기 위하여 최근에 다중 판별기를 활용한 연구들이 영상 판별 및 물체 검출 영역에서 사용되고 있다. 따라서 본 논문에서는 행동 인식을 위하여 support vector machine과 sparse representation을 이용한 decision-level fusion 방법을 제안하고자 한다. 제안된 논문의 방법은 영상에서 특징점 기반의 descriptor를 추출하고 이를 각각의 판별기를 통하여 판별 결과들을 획득한다. 이 후 학습단계에서 획득된 가중치를 활용하여 각 결과들을 융합하여 최종 결과를 도출하였다. 본 논문에 실험에서 제안된 방법은 기존의 융합 방법보다 높은 행동 인식 성능을 보여 주었다.
본 논문에서는 효율적인 차량 영상 안정화를 위한 고성능 차량 영상 정보 시스템을 제안한다. 제안된 시스템은 움직임 추정 및 움직임 보상으로 분할하여 설계하였다. 움직임 추정은 지역 모션 벡터 추정 및 불규칙 지역 모션 검출, 전역 모션 벡터 추정으로 구성하였다. 움직임 보상은 추정된 전역 모션 벡터를 사용하여 차량의 영상 흔들림을 보상하기 위해 네 방향에 대하여 보정을 하였다. 설계된 알고리즘은 차량 영상 안정화를 위해 IP에 적용하여 움직임 보정 기술 칩을 설계하였다. 본 논문의 결과, 움직이는 물체에 대한 차량 영상 안정화는 메모리를 사용하지 않고 실시간 처리를 했기 때문에 다른 방법과 비교하여 효율성을 입증하였다. 또한, 블록 정합을 통한 연산으로 계산 시간 감소 효과를 얻었다.
본 논문에서는 FAST(Features from Accelerated Segment Test) 특징점 검출기와 SIFT(Scale Invariant Feature Transform) 특징점 서술자(descriptor)를 사용하여 시점 변화에 강인한 특징점 정합 기법을 제안한다. 기존의 FAST 기법은 영상의 에지 부분을 따라서 불필요하게 특징점을 많이 추출하게 되는데 이러한 단점을 주곡률(principal curvatures)을 적용하여 개선한다. 추출된 특징점을 SIFT 서술자를 통해 기술하고 시점이 다른 두 영상으부터 구해진 정합쌍에 RANSAC(RANdom SAmple Consensus) 기법을 통하여 호모그래피(homography)를 계산한다. 시점 변화에 강인한 특징점 정합을 위해서 기준 영상의 특징점들을 호모그래피 변환을 통해 변경된 좌표와 시점이 다른 영상의 특징점 좌표간의 유클리디언(Euclidean) 거리를 통해 정합쌍을 분류한다. 같은 물체나 장소에 대해 시점이 변화된 여러 영상에 대한 실험을 통해서 제안하는 정합 기법이 적은 계산량으로 기존의 특징점 정합 기법보다 우수한 성능을 보여주는 것을 확인하였다.
바둑 기보를 자동으로 기록하는 기존의 방법들은 대국 중 발생하는 방해물(손 혹은 물체)의 바둑판 가림 현상을 제대로 고려하지 않았다. 방해물에 의해 바둑판이 가려지는 경우 바둑돌의 착수 위치를 인식하지 못하거나, 바둑돌의 착수 순서가 실제와 다르게 저장되는 문제가 발생할 수 있다. 제안된 알고리즘은 방해물이 없는 온전한 바둑판 영상만을 배경 영상으로 내부에 저장하고 배경 영상과 현재 입력 영상을 비교하여 방해물을 인식한다. 그림자가 방해물로 오인식되는 현상을 제거하기 위해 단순한 차 영상이 아닌 미분영상을 기반으로 한 방해물 검출 방법이 제안되었다. 추가로 노이즈에 강인하게 방해물을 인식하기 위한 노이즈 제거 방법도 제안되었다. 방해물이 없는 때는 배경 영상을 지속적으로 갱신한다. 최종적으로 각 순간마다 저장된 배경 영상들을 비교하여 바둑돌의 착수 위치와 바둑돌의 종류를 인식한다. 실험 결과에 따르면 일반적인 조명환경에서 제안된 알고리즘은 95%이상의 인식률을 보여준다.
텍스쳐 분석은 표면, 물체, 모양, 깊이 인식 등의 많은 영상 이해 분야에서 활용되는 가장 중요한 인식 기술 중의 하나이다. 그러나 기존의 방법들은 다중 텍스쳐 영상에 내재된 텍스쳐 성분의 인식 정보를 활용할 수 없는 분할만을 목적으로 하고 있으며, 내재된 텍스쳐 인식을 기반으로 하는 비교사적인 방법에 관한 연구는 거의 이루어지고 있지 않은 실정이다. 따라서 본 논문에서는 텍스쳐 성분을 방향장(orientation-field) 특징 정보인 방향각과 방향강도로 정의하고 블록-기반 자기조직화 신경회로망에 의해서 비교사적으로 영상 내에 존재하는 텍스쳐 영역을 군화(clustering) 및 통합(merging) 처리에 의해서 식별한다. 또한 제안된 알고리즘의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 블록 기반의 불림(dilation) 및 윤곽 검출 과정을 통해서 영상에 내재하는 텍스쳐 영역을 분할함으로써 그 유효성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.