• Title/Summary/Keyword: 물체

Search Result 5,323, Processing Time 0.036 seconds

The Effect of Anaerobic Fermentation Treatment of Rice or Wheat bran on the Physical and Chemical property of Plastic Film House Soil (쌀겨와 밀기울의 토양 혐기발효 처리가 시설 재배지 토양의 물리 화학성에 미치는 영향)

  • Kim, Hong-Lim;Sohn, Bo-Kyun;Jung, Kang-Ho;Kang, Youn-Ku
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.366-371
    • /
    • 2006
  • This study was done to assess the physical and chemical properties after anaerobic fermentation treatment which use rice bran or wheat bran in plastic film house soil. The results which investigates the change of soil physical property after treatment 150 days showed a dramatic difference. The physical properties of control soil were the bulk density $1.46Mg\;m^{-3}$, hardness $2.30Kg\;cm^{-3}$, hydraulic conductivity $4.8cm\;hr^{-1}$, water stable aggregate(>0.5mm) 6.7%. Of the soil which treatment the rice bran in comparison to control soil, bulk density and hardness was diminished 12% and 58%, respectively. hydraulic conductivity and water stable aggregate(>0.5mm) were increased 4.5 and 5.2 fold, respectively. And, in the soil which treatment the wheat bran, bulk density and hardness was diminished 14% and 67%, respectively. Hydraulic conductivity and water stable aggregate(>0.5mm) were increased 6.3 and 6.5 fold, respectively. $NO_3-N$ contents of the soil which treated the rice bran or wheat bran after treatment 20 days were diminished 98% in comparison to control soil. The decrease of $NO_3-N$ contents in the soil was investigated with the fact that it is caused by with increase of the soil-microbial biomass. EC of the soil which treated the rice bran were $1.48dS\;m^{-1}$ which was diminished 58% in comparison to control soil. That of soil which treated the wheat bran was increased $3.65dS\;m^{-1}$ in the early stage because of acetic and butyric acid. But it was reduced as under $2.0dS\;m^{-1}$ after treatment 30 days. As the conclusion the anaerobic fermentation treatment with rice or wheat bran was effective to the improvement of soil physical and salt accumulation of the plastic film house soil.

Mythologies of Design Thinking: Based on Roland Barthes's Mythologies (디자인 씽킹의 신화성 - 롤랑바르트 기호의 신화론을 배경으로)

  • Kim, Kyung-Won
    • 기호학연구
    • /
    • no.57
    • /
    • pp.7-26
    • /
    • 2018
  • The purpose of this paper is to interpret the discourse on design thinking through the perspective of Roland Barthes' Mythologies. To this end, this paper will explore the mythologization process of design thinking using the methodological framework of Barthes, which structurally interprets the connotations produced using semiosis. Design thinking originally refers to a method which is used in the process of planning ideas about designs in order to create the final products for professional designs. However, design thinking has recently attracted more interest from the public because it has become known as a tool for solving various problems which exist outside of the field of design, such as social issues, management, and marketing strategies. Barthes points out that myths are used as a tool to deliver ideologies. He also emphasizes the importance of 'structural thinking'. It interprets the inherent connotative meanings more than the denotative meanings, which are explicitly shown. One of the most powerful ideologies which our society embraces today is creativity. Design thinking realizes the manifestation of creativity through a schematized process. This can be explained by considering design thinking as an icon that is specifically turned into a figuration to realize its objectness, in which a discourse for solving issues and social codes meet together and form a mythology. The mythologies that Barthes cites in his book refer to mythical values created by the cultural codes which humans have produced in our modern and contemporary age. The symbolic value of design thinking has become more important than the signifier which design thinking itself presents. This means that design thinking has become a sign that has mythical properties. In other words, the ideology of creativity embodied by design thinking has attained a mythological status, as it produces a new cultural code through innovation. The process of interpreting a phenomenon using the perspective of semiotics is an important tool that allows us to examine the concept of an object and its surroundings thoroughly. This paper attempts to expand the external scope of critical analysis about social phenomena by using the signs which continuously reveal themselves in common ideologies, such as design thinking, which has been gaining more popularity recently.

Changes in Spherical Aberration and Coma Aberration after Wearing Aspheric Soft Contact Lens in Young Myopes (젊은 성인 근시안에서 비구면 소프트 콘택트렌즈 착용 후 구면수차와 코마수차의 변화)

  • Lim, Dong-Kyu;Kwon, Hyeok;Lee, Koon-Ja
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.469-482
    • /
    • 2018
  • Purpose : We investigated the change of spherical and comma aberrations after wearing aspheric soft contact lens (ASCL) in young myopes. Methods : Fifty young myopes ($23.15{\pm}1.70years$, spherical equivalent: $-2.90{\pm}1.75D$) were recruited and refractive errors were corrected using ASCL (Biotrue, Bausch+Lomb, USA). High order aberrations were measured in the 4 mm pupil size using the wavefront analyze and pupil sizes were measured with a pupillometer at the modes of scotopic condition (light off) at 3.5 m in the 100 lx illuminance condition. Results : Spherical aberrations and coma aberration of the 20s myopes were $0.026{\pm}0.031{\mu}m$ and $0.078{\pm}0.039{\mu}m$ respectively, and $0.019{\pm}0.026{\mu}m$ and $0.082{\pm}0.038{\mu}m$ after ASCL wear that spherical aberration was decreased and coma aberration was increased. However, spherical aberration was decreased in the 68% of the subject have positive spherical aberration, and increased in the 11% of the subject have negative spherical aberration. Coma aberration was increased in the 53% of the subject, did not change in the 19% of the subjects, and decreased in the 28% of the subject. Spherical aberration was not different with the refractive errors in low and moderate myopies, however, coma aberrations was higher in the higher myopes. Conclusion : In a scotopic condition without accommodation stimuli, spherical aberration is decreased after wearing ASCL, however in the subject have negative spherical aberration spherical aberration could be increased, and which is thought to be the influence of contact lens design and pupil size.

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations (인공위성 원격탐사를 이용한 백두산 화산 감시 연구 리뷰)

  • Hong, Sang-Hoon;Jang, Min-Jung;Jung, Seong-Woo;Park, Seo-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1503-1517
    • /
    • 2018
  • Mt. Baekdu is a stratovolcano located at the border between China and North Korea and is known to have formed through its differentiation stage after the Oligocene epoch in the Cenozoic era. There has been a growing interest in the magma re-activity of Mt. Baekdu volcano since 2010. Several research projects have been conducted by government such as Korea Meteorological Administration and Korea Institute of Geoscience and Mineral Resources. Because, however, the Mt. Baekdu volcano is located far from South Korea, it is quite difficult to collect in-situ observations by terrestrial equipment. Remote sensing is a science to analyze and interpret information without direct physical contact with a target object. Various types of platform such as automobile, unmanned aerial vehicle, aircraft and satellite can be used for carrying a payload. In the past several decades, numerous volcanic studies have been conducted by remotely sensed observations using wide spectrum of wavelength channels in electromagnetic waves. In particular, radar remote sensing has been widely used for volcano monitoring in that microwave channel can gather surface's information without less limitation like day and night or weather condition. Radar interferometric technique which utilized phase information of radar signal enables to estimate surface displacement such as volcano, earthquake, ground subsidence or glacial movement, etc. In 2018, long-term research project for collaborative observation for Mt. Baekdu volcano between Korea and China were selected by Korea government. A volcanic specialized research center has been established by the selected project. The purpose of this paper is to introduce about remote sensing techniques for volcano monitoring and to review selected studies with remote sensing techniques to monitor Mt. Baekdu volcano. The acquisition status of the archived observations of six synthetic aperture radar satellites which are in orbit now was investigated for application of radar interferometry to monitor Mt. Baekdu volcano. We will conduct a time-series analysis using collected synthetic aperture radar images.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.

Analysis of Behavioral Characteristics of Broilers by Feeding, Drinking, and Resting Spaces according to Stocking Density using Image Analysis Technique (영상분석기법을 활용한 사육밀도에 따른 급이·급수 및 휴식공간별 육계의 행동특성 분석)

  • Kim, Hyunsoo;Kang, HwanKu;Kang, Boseok;Kim, ChanHo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.558-569
    • /
    • 2020
  • This study examined the frequency of a broiler's stay in each area as stock density using an ICT-based image analysis technique from the perspective of precision livestock farming (PLF) according to the increase in the domestic broiler farms to understand the normal behavior patterns of broilers by age. The broiler was used in the experimental box (3.3×2.7 m) in a poultry house in Gyeonggi province. The stock densities were 9.5 birds/㎡ (n=85) and 19 birds/㎡ (n=170), respectively, and the frequency of stay by feeding, water, and rest area was monitored using a top-view camera. The image data of three-colored-specific broilers identified as the stock density were acquired by age (12, 16, 22, 27, and 29 days) for six hours. In the collected image data, the object tracking technique was used to record the cumulative movement path by connecting approximately 640,000 frames at 30 fps to quantify the frequency of stay in each area. In each stock density, it was significant in the order of the rest area, feeding, and water area (p<0.001). In 9.5 birds/㎡, it was at 57.9, 24.2, and 17.9 %, and 73.2, 16.8, and 10 % in 19 birds/㎡. The frequency of a broiler's stay could be evaluated in each area as the stock density using an ICT-based image analysis technique that minimizes stress. This method is expected to be used to provide basic material for developing an ICT-based management system through real-time monitoring.

An Early-Maturing and High-Biomass Tetraploid Rye (Secale cereale L.) Variety 'Daegokgreen' for Forage Use (조생 다수성 조사료용 4배체 호밀 '대곡그린')

  • Ku, Ja-Hwan;Han, Ouk-kyu;Oh, Young-Jin;Park, Tae-Il;Kim, Dae-Wook;Kim, Byung-Joo;Park, Myoung Ryoul;Ra, Kyung-Yoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.209-215
    • /
    • 2020
  • A winter forage tetraploid rye (Secale cereale L.) cultivar, 'Daegokgreen', was developed at the Department of Central Area Crop Science, NICS, RDA in 2016. The mutant line 'CG11003-8-B', which was induced from rye cultivar 'Gogu' (diploid) by colchicine treatment, was selected for its excellent agronomic performance and was placed in preliminary yield trials for one year, 2013. The line was designated "Homil59" and was tested for regional yield trials at the four locations in Korea from 2014 to 2016. Finally, the new cultivar was named as the 'Daegokgreen' (grant number 8274). The leaf of cultivar 'Daegokgreen' is wide, long and dark-green color. The cultivar also has a big-size grain with light-brown color. The heading date of cultivar 'Daegokgreen' was April 17 which was 2 days later than that of check cultivar 'Gogu'. The tolerance to cold and wet injury, and resistance to powdery mildew and leaf rust of the new cultivar were similar to those of the check cultivar but the resistance to the lodging of the new cultivar was stronger than that of the check. The average roughage fresh and dry matter yield of the new cultivar after 10 days from heading were 37.0 and 7.7 MT ha-1, respectively, which were similar to those (38.4 and 8.0 MT ha-1) of the check cultivar. The roughage quality of 'Daegokgreen' was higher in crude protein content (8.9%) than that of the check cultivar (7.9%), while was similar to the check in total digestible nutrients (56.9%). This cultivar is recommended for fall sowing forage crops at all of crop cultivation areas in Korea.

A Relative Study of 3D Digital Record Results on Buried Cultural Properties (매장문화재 자료에 대한 3D 디지털 기록 결과 비교연구)

  • KIM, Soohyun;LEE, Seungyeon;LEE, Jeongwon;AHN, Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.175-198
    • /
    • 2022
  • With the development of technology, the methods of digitally converting various forms of analog information have become common. As a result, the concept of recording, building, and reproducing data in a virtual space, such as digital heritage and digital reconstruction, has been actively used in the preservation and research of various cultural heritages. However, there are few existing research results that suggest optimal scanners for small and medium-sized relics. In addition, scanner prices are not cheap for researchers to use, so there are not many related studies. The 3D scanner specifications have a great influence on the quality of the 3D model. In particular, since the state of light reflected on the surface of the object varies depending on the type of light source used in the scanner, using a scanner suitable for the characteristics of the object is the way to increase the efficiency of the work. Therefore, this paper conducted a study on nine small and medium-sized buried cultural properties of various materials, including earthenware and porcelain, by period, to examine the differences in quality of the four types of 3D scanners. As a result of the study, optical scanners and small and medium-sized object scanners were the most suitable digital records of the small and medium-sized relics. Optical scanners are excellent in both mesh and texture but have the disadvantage of being very expensive and not portable. The handheld method had the advantage of excellent portability and speed. When considering the results compared to the price, the small and medium-sized object scanner was the best. It was the photo room measurement that was able to obtain the 3D model at the lowest cost. 3D scanning technology can be largely used to produce digital drawings of relics, restore and duplicate cultural properties, and build databases. This study is meaningful in that it contributed to the use of scanners most suitable for buried cultural properties by material and period for the active use of 3D scanning technology in cultural heritage.

A Study on Daytime Transparent Cloud Detection through Machine Learning: Using GK-2A/AMI (기계학습을 통한 주간 반투명 구름탐지 연구: GK-2A/AMI를 이용하여)

  • Byeon, Yugyeong;Jin, Donghyun;Seong, Noh-hun;Woo, Jongho;Jeon, Uujin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1181-1189
    • /
    • 2022
  • Clouds are composed of tiny water droplets, ice crystals, or mixtures suspended in the atmosphere and cover about two-thirds of the Earth's surface. Cloud detection in satellite images is a very difficult task to separate clouds and non-cloud areas because of similar reflectance characteristics to some other ground objects or the ground surface. In contrast to thick clouds, which have distinct characteristics, thin transparent clouds have weak contrast between clouds and background in satellite images and appear mixed with the ground surface. In order to overcome the limitations of transparent clouds in cloud detection, this study conducted cloud detection focusing on transparent clouds using machine learning techniques (Random Forest [RF], Convolutional Neural Networks [CNN]). As reference data, Cloud Mask and Cirrus Mask were used in MOD35 data provided by MOderate Resolution Imaging Spectroradiometer (MODIS), and the pixel ratio of training data was configured to be about 1:1:1 for clouds, transparent clouds, and clear sky for model training considering transparent cloud pixels. As a result of the qualitative comparison of the study, bothRF and CNN successfully detected various types of clouds, including transparent clouds, and in the case of RF+CNN, which mixed the results of the RF model and the CNN model, the cloud detection was well performed, and was confirmed that the limitations of the model were improved. As a quantitative result of the study, the overall accuracy (OA) value of RF was 92%, CNN showed 94.11%, and RF+CNN showed 94.29% accuracy.