• Title/Summary/Keyword: 물질전달 모델링

Search Result 57, Processing Time 0.022 seconds

Broadband Multi-Layered Radome for High-Power Applications (고출력 환경에 적용 가능한 광대역 다층 구조 레이돔)

  • Lee, Ki Wook;Lee, Kyung Won;Moon, Bang Kwi;Choi, Samyeul;Lee, Wangyong;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • In this paper, we developed a broadband multi-layered radome applicable for high-power applications. In this regard, we presented the wave propagation characteristics of the broadband multi-layered radome with the ABCD matrix and obtained the optimal thickness and the material constant for each layer by an optimization algorithm called "particle swarm optimization," implemented by a commercial numerical modeling tool. Further, we redesigned it in view of mechanical properties to reflect environmental conditions such as wind, snow, and ice. The power transmission property was reanalyzed based on the recalculated data of each layer's thickness to consider the limitations of the fabrication of a large structure. Under the condition of a peak electric field strength that is 10 dB above the critical electric field strength in air breakdown, we analyzed the air breakdown by radio frequency(RF) in the designed radome using the commercial full-wave electromagnetic tool. The radome was manufactured and tested by continuous wave(CW) RF small signal and large signal in an anechoic chamber. The test results showed good agreement with those attained by simulation.

Creating Electrochemical Sensors Utilizing Ion Transfer Reactions Across Micro-liquid/liquid Interfaces (마이크로-액체/액체 계면에서의 이온 이동 반응을 이용한 전기화학 센서 개발)

  • Kim, Hye Rim;Baek, Seung Hee;Jin, Hye
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-455
    • /
    • 2013
  • Electrochemical studies on charge transfer reactions across the interface between two immiscible electrolyte solutions (ITIES) have greatly attracted researcher's attentions due to their wide applicability in research fields such as ion sensing and biosensing, modeling of biomembranes, pharmacokinetics, phase-transfer catalysis, fuel generation and solar energy conversion. In particular, there have been extensive efforts made on developing sensing platforms for ionic species and biomolecules via gelifying one of the liquid phases to improve mechanical stability in addition to creating microscale interfaces to reduce ohmic loss. In this review, we will mainly discuss on the basic principles, applications and future aspects of various sensing platforms utilizing ion transfer reactions across the ITIES. The ITIES is classified into four types : (i) a conventional liquid/liquid interface, (ii) a micropipette supported liquid/liquid interface, (iii) a single microhole or an array of microholes supported liquid/ liquid interface on a thin polymer film, and (iv) a microhole array liquid/liquid interface on a silicon membrane. Research efforts on developing ion selective sensors for water pollutants as well as biomolecule sensors will be highlighted based on the use of direct and assisted ion transfer reactions across these different ITIES configurations.

A Bio-Edutainment System to Virus-Vaccine Discovery based on Collaborative Molecular in Real-Time with VR

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.109-117
    • /
    • 2020
  • An edutainment system aims to help learners to recognize problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Edutainment contents can be usefully applied to education and training in the both scientific and industrial areas. Our present work proposes an edutainment system that can be applied to a drug discovery process including virtual screening by using intuitive multi-modal interfaces. In this system, a stereoscopic monitor is used to make three-dimensional (3D) macro-molecular images, with supporting multi-modal interfaces to manipulate 3D models of molecular structures effectively. In this paper, our system can easily solve a docking simulation function, which is one of important virtual drug screening methods, by applying gaming factors. The level-up concept is implemented to realize a bio-game approach, in which the gaming factor depends on number of objects and users. The quality of the proposed system is evaluated with performance comparison in terms of a finishing time of a drug docking process to screen new inhibitors against target proteins of human immunodeficiency virus (HIV) in an e-drug discovery process.

Solid Phase Synthesis of N-(3-hydroxysulfonyl)-L-homoserine Lactone Derivatives and their Inhibitory Effects on Quorum Sensing Regulation in Vibrio harveyi (고체상 합성법에 의해 합성된 N-(3-hydroxysulfonyl)-L-homoserine Lactone 유사체들의 Vibrio harveyi 쿼럼 센싱에 대한 저해 효과)

  • Kim, Cheol-Jin;Park, Hyung-Yeon;Kim, Jae-Eun;Park, Hee-Jin;Lee, Bon-Su;Choi, Yu-Sang;Lee, Joon-Hee;Yoon, Je-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.248-257
    • /
    • 2009
  • The inhibitors against Vibrio harveyi quorum sensing (QS) signaling were developed by modifying the molecular structure of the major signal, N-3-hydroxybutanoyl-L-homoserine lactone (3-OH-$C_4$-HSL). A series of structural derivatives, N-(3-hydroxysulfonyl)-L-homoserine lactones (HSHLs) were synthesized by the solid-phase organic synthesis method. The in vivo QS inhibition by these compounds was measured by a bioassay system using the V. harveyi bioluminescence, and all showed significant inhibitory effects. To analyze the interaction between these compounds and LuxN, a 3-OH-$C_4$-HSL receptor protein of V. harveyi, we tentatively determined the putative signal binding domain of LuxN based on the sequence homology with other acyl-HSL binding proteins, and predicted the partial 3-D structure of the putative signal binding domain of LuxN by using ORCHESTRA program, and further estimated the binding poses and energies (docking scores) of 3-OH-$C_4$-HSL and HSHLs within the domain. In comparison of the result from this modeling study with that of in vivo bioassay, we suggest that the in silica interpretation of the interaction between ligands and their receptor proteins can be a valuable way to develop better competitive inhibitors, especially in the case that the structural information of the protein is limited.

Numerical Simulation for Evaluation the Feasibility of Using Sand and Gravel Contaminated by Heavy Metals for Dam Embankment Materials (중금속으로 오염된 사력재의 댐축조 재료 활용 가능성 평가를 위한 수치 모델링)

  • Suk, Hee-Jun;Seo, Min-Woo;Kim, Hyoung-Soo;Lee, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.209-221
    • /
    • 2007
  • Numerical analysis was performed to investigate the effect of heavy metal contamination on neighboring environment in case a dam is constructed by using rockfill materials contaminated by heavy metals. The numerical simulation carried out in this research includes both subsurface flow and contaminant transport in the inside of the CFRD(Concrete Faced Rockfill Dam), using two commercial programs, SEEP2D and FEMWATER. The three representative cases of scenarios were chosen to consider a variety of cases occurring in a dam site; (1) Scenario 1 : no crack in the concrete face slab, (2) Scenario 2 : a crack In the upper part of face slab, and (3) Scenario 3 : a crack between plinth and face slab in the lower part of face slab. As a result of seepage analysis, the amount of seepage in scenario 2 was calculated as $14.31\sim14.924m^3/day$ per unit width, corresponding to the 1,000 times higher value than that in other scenarios. Also, in the simulation of contaminant transport by using FEMWATER, specified contaminant concentration of 13 ppb in main rockfill zone was set to consider continuous leakage from the rock materials. Through the analysis of contaminant transport, we found that elapsed times to take for the contaminant concentration of about 2 ppb to arrive at the end of a dam are as follows. Scenario 1 has the elapsed time of 55,000 years. In Scenario 2. it is 50 years. Finally, scenario 3 has 27,000 years. The rapid transport of the contaminant in scenario 2 was attributed to greater seepage flow by 500 times than other scenarios. Although, in case of upper crack in the face slab, it was identified that the contaminant might transport to the end of a dam within 100 years with about 2 ppb concentration, however, it happened that the contaminant was hardly transported out of the dam in other scenarios, which correspond to either no crack or a crack between plinth and face slab. In conclusion, the numerical analysis showed that the alternative usage of the contaminated sand and gravel as the dam embankment material can be one of the feasible methods with the assumption that the cracks in a face slab could be controlled adequately.

Modeling on the Sorption Kinetics of Lead and Cadmium onto Natural Sediments (퇴적물에서의 납과 카드뮴의 흡착 동력학 모델링)

  • Kwak, Mun-Yong;Ko, Seok-Oh;Park, Jae-Woo;Jeong, Yeon-Gu;Shin, Won-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.450-461
    • /
    • 2006
  • In this study, sorption kinetics of lead (Pb) and cadmium (Cd) onto coastal sediments were investigated at pH 5.5 using laboratory batch adsorbers. Four different models: one-site mass transfer model (OSMTM), pseudo-first-order kinetic model (PFOKM) ,pseudo-second-order kinetic model (PSOKM) and two compartment first-order kinetic model (TCFOKM) were used to analyze the sorption kinetics. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM, PFOKM and PSOKM in describing sorption kinetics of Pb and Cd onto sediments. Most sorption of Pb and Cd was rapidly completed within the first three hours, followed by slow sorption in the subsequent period of sorption. All models predicted that the sorbed amount at the apparent sorption ($q_{e,s}$) equilibria increased as the CEC and surface area of the sediments increased, regardless of initial spiking concentration ($C_0$) and heavy metal and the sediment type. The sorption rate constant ($k_s,\;hr^{-1}$) in OSMTM also increased as the CEC and BET surface area increased. The rate constant of pseudo-first-order sorption ($k_{p1,s},\;hr^{-1}$) in PFOKM were not correlated with sediment characteristics. The results of PSOKM analysis showed that the rate constant of pseudo-second-order sorption ($k_{p2,s},\;g\;mmol^{-1}\;hr^{-1}$) and the initial sorption rate ($v_{o,s},\;mg\;g^{-1}\;hr^{-1}$) were not correlated with sediment characteristics. The fast sorption fraction ($f_{1,s}$) in TCFOKM increased as CEC and BET surface increased regardless of initial aqueous phase concentrations. The sorption rate constant of fast fraction ($k_{1,s}=10^{0.1}-10^{1.0}\;hr^{-1}$) was much greater than that of slow sorption fraction ($k_{2,s}=10^{-2}-10^{-4}\;hr^{-1}$) respectively.

Treatment of Malodorous Waste Air by a Biofilter Process Equipped with a Humidifier Composed of Fluidized Aerobic and Anoxic Reactor (폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정을 이용한 악취폐가스의 처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • In this research, a biofilter system equipped with a biofilter process and a humidifier composed of a fluidized aerobic and an anoxic reactor, was constructed to treat odorous waste air containing hydrogen sulfide, ammonia and VOC, frequently generated from pig and poultry housing facilities, compost manufacturing factories and publicly owned facilities. Its optimum operating condition was revealed and discussed. In the experiment of complex feed, the ammonia of fed-waste air was removed by ca. 75% and more than 20% at the stage of the humidifier and the biofilter, respectively. The toluene of the fed-waste air was removed by ca. 20% and more than 70% at the stage of the humidifier and the biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of the humidifier and the biofilter, respectively. In addition, hydrogen sulfide was almost absorbed at the stage of the humidifier so that it was not detected at the biofilter process. In the experiment of ammonia-containing feed, the ammonia of fed-waste air was removed by ca. 65% and 35% at the stage of the humidifier and the biofilter, respectively. Its removal efficiency of ammonia at the stage of the humidifier was 10% less than that in the experiment of complex feed, due to no supply of such carbon source as toluene required in the process of denitrification. In the experiments of complex feed, ammonia-containing feed with and without (instead, glucose) the addition of yeast extract, the absorption rates of ammonia-nitrogen were ca. 0.28 mg/min, 0.23 mg/min and 0.27 mg/min, respectively. The corresponding denitrification rates in the anoxic reactor were 0.42 mg/min, 0.55 mg/min and 0.27 mg/min, respectively. In addition, in the modeling of bubble column(the fluidized aerobic reactor of the humidifier) process, the value of specific surface area(a) of bubbles multiplied by enhanced mass transfer coefficient (E $K_y$) was evaluated to be 0.12/hr.