• Title/Summary/Keyword: 물성 불연속성

Search Result 4, Processing Time 0.018 seconds

A Numerical Analysis of Dynamic Behavior of Rock Mass with Intense Discontinuities (절리의 방향성을 고려한 암반의 동적거동 수치해석)

  • Ha, Tae-Wook;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.394-404
    • /
    • 2006
  • Dynamic behavior of rock structures depends largely on the dynamic characteristics of ground and input earthquake wave. For blocky rocks with intense discontinuities, the mechanical characteristics of blocks and structural and mechanical characteristics of discontinuities affect overall behavior. In this study, UDEC was adopted to evaluate the dynamic behavior of rocks with various structural characteristics. Obtained results were compared to those of $FLAC^{2D}$, a continuum analysis, and the validity of the method was examined for dynamic analysis of discontinuous rocks for earthquake. Analysis considering the discontinuity showed significant changes in structural shape by the influence of joint behavior, and the behavior by continuum analysis was overestimated.

Development of Stochastic Finite Element Model for Underground Structure with Discontinuous Rock Mass Using Latin Hypercube Sampling Technique (LHS기법을 이용한 불연속암반구조물의 확률유한요소해석기법개발)

  • 최규섭;정영수
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.143-154
    • /
    • 1997
  • Astochastic finite element model which reflects both the effect of discontinuities and the uncertainty of material properties in underground rock mass has been developed. Latin Hypercube Sampling technique has been mobilized and compared with the Monte Carlo simulation method. To consider the effect of discontinuities, the joint finite element model, which is known to be suitable to explain faults, cleavage, things of that nature, has been used in this study. To reflect the uncertainty of material properties, multi-random variables are assumed as the joint normal stiffness and the joint shear stiffness, which could be simulated in terms of normal distribution. The developed computer program in this study has been verified by practical example and has been applied to analyze the circular cavern with discontinuous rock mass.

  • PDF

Dynamic Analysis of Soil-Pile-Structure Interaction Considering a Complex Soil Profile (복잡한 지반층을 고려한 지반-말뚝-구조물의 상호작용 동해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • The precise analysis of soil-pile-structure interaction requires a proper description of soil layer, pile, and structure. In commonly used finite element simulations, mesh boundaries should match the material discontinuity line. However, in practice, the geometry of soil profiles and piles may be so complex that mesh alignment becomes a wasteful and difficult task. To overcome these difficulties, a different integration method is adopted in this paper, which enables easy integration over a regular element with material discontinuity regardless of the location of the discontinuity line. By applying this integration method, the mesh can be generated rapidly and in a highly structured manner, leading to a very regular stiffness matrix. The influence of the shape of the soil profile and piles on the response is examined, and the validity of the proposed soil-pile structure interaction analysis method is demonstrated through several examples. It is seen that the proposed analysis method can be easily used on soil-pile-structure interaction problems with complex interfaces between materials to produce reliable results regardless of the material discontinuity line.

A Study on Scale Effects in Jointed Rock Mass Properties, and Their Application (절리 암반물성의 크기효과 및 그 적용에 관한 연구)

  • 김창용;문현구
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.147-164
    • /
    • 1997
  • This study has the assumption that scale effects in rock mass properties are atrributed to the discontinuous and inhomogeneous nature of rock masses. In order to escape the general equivalent material approach applied to the concept of representative volume element, this study presents the new method considering irregular i oink geometry and arbitrary numbers of i oink and arbitrary joint orientations. Based on the theoretical approach, this theory is applied to a real engineering project. Showing the property variations with size of rock mass element, various numerical experiments about scale effect are conducted. Particularly, to prove the adequacy of the verification process in scale effect with nomerical method, and to investigate the detailed source of scale effect, 4 models with increas ins number of joints are tested. On the basis of the experimental results, the test results of scale effects in 3-D rock mass are presented. From these experiments the effects of the mechanical properties of rock joints on the scale effects in rock mass strength and elastic constants are discussed. To verify the mechanism of scale effects in jointed rock mass, two models with different j oink geometries are studied.

  • PDF