Motion synthesis using physics-based controllers can generate a character animation that interacts naturally with the given environment and other characters. Recently, various methods using deep neural networks have improved the quality of motions generated by physics-based controllers. In this paper, we present a control policy learned by deep reinforcement learning (DRL) that enables Luxo, the mascot character of Pixar animation studio, to run towards a random goal location while imitating a reference motion and maintaining its balance. Instead of directly training our DRL network to make Luxo reach a goal location, we use a reference motion that is generated to keep Luxo animation's jumping style. The reference motion is generated by linearly interpolating predetermined poses, which are defined with Luxo character's each joint angle. By applying our method, we could confirm a better Luxo policy compared to the one without any reference motions.
In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.
Human fingers are essential parts of the body that perform complex and detailed motion. Expression of natural finger motion is one of the most important issues in character animation research. Especially, keyboard typing animation is hard to create through the existing animation pipeline because the keyboard typing typically requires a high level of dexterous motion that involves the movement of various joints in a natural way. In this paper, we suggest a method for the generation of realistic keyboard typing motion based on physics simulation. To generate typing motion properly using physics-based simulation, the hand and the keyboard models should be positioned in an allowed range of simulation space, and the typing has to occur at a precise key location according to the input signal. Based on the observation, we incorporate natural tendency that accompanies actual keyboard typing. For example, we found out that the positions of the hands and fingers always assume the default pose, and the idle fingers tend to minimize their motion. We handle these various constraints in one solver to achieve the results of real-time natural keyboard typing simulation. These results can be employed in various animation and virtual reality applications.
This paper presents a novel on-line trajectory optimization framework based on automatic time warping, which performs the time warping of a reference motion while optimizing character motion control. Unlike existing physics-based character animation methods where sampling times for a reference motion are uniform or fixed during optimization in general, our method considers the change of sampling times on top of the dynamics of character motion in the same optimization, which allows the character to effectively respond to external pushes with optimal time warping. In order to do so, we formulate an optimal control problem which takes into account both the full-body dynamics and the change of sampling time for a reference motion, and present a model predictive control framework that produces an optimal control policy for character motion and sampling time by repeatedly solving the problem for a fixed-span time window while shifting it along the time axis. Our experimental results show the robustness of our framework to external perturbations and the effectiveness on rhythmic motion synthesis in accordance with a given piece of background music.
인터랙티브 컴퓨터 게임과 컴퓨터 애니메이션에서, 유관절체의 움직임을 직관적으로 제어하도록 하는 것은 어려운 문제로 인식되고 있다. 이런 분야에서는 대부분 움직임의 대상이 되는 캐릭터가 많은 관절로 연결되어 있는데, 이때 각 관절을 사용자의 의도대로 쉽게 조종할 수 있도록 해주는 인터페이스를 디자인하기가 어렵기 때문이다. 본 논문에서는 자유도(DOF)가 높은 캐릭터의 움직임을 제어하기 위해 오랫동안 인형극에서 사용되고 있는 마리오넷 조종 기법[5]을 응용한 마리오넷 시스템을 제안하고자 한다. 우리는 가상 마리오넷 시스템을 물리기반 모델링과 햅틱 인터페이스를 기반으로 구현하였고, 이 시스템을 통해 높은 자유도를 가지는 유관절체 캐릭터의 복잡한 움직임을 쉽게 생성해낼 수 있었다. 그리고 사용자에게 햅틱 포스 피드백을 줌으로써 더욱 정교한 마리오넷을 조작이 가능하도록 하였다. 이 시스템을 일반적인 유관절체에 적용한다면 다양한 움직임을 쉽고 빠르게 생성할 수 있을 것이다.
For decades, creating a desired locomotive motion in a goal-oriented manner has been a challenge in character animation. Data-driven methods using generative models have demonstrated efficient ways of predicting long sequences of motions without the need for explicit conditioning. While these methods produce high-quality long-term motions, they can be limited when it comes to synthesizing motion for challenging novel scenarios, such as punching a random target. A state-of-the-art solution to overcome this limitation is by using a GAN Discriminator to imitate motion data clips and incorporating reinforcement learning to compose goal-oriented motions. In this paper, our research aims to create characters performing combat sports such as boxing, using a novel reward design in conjunction with existing GAN-based approaches. We experimentally demonstrate that both the Adversarial Motion Prior [3] and Adversarial Skill Embeddings [4] methods are capable of generating viable motions for a character punching a random target, even in the absence of mocap data that specifically captures the transition between punching and locomotion. Also, with a single learned policy, multiple task controllers can be constructed through the TimeChamber framework.
In this paper, we present a simple and fast supervised learning framework based on model predictive control so as to learn motion controllers for a physic-based character to track given example motions. The proposed framework is composed of two components: training data generation and offline learning. Given an example motion, the former component stochastically controls the character motion with an optimal controller while repeatedly updating the controller for tracking the example motion through model predictive control over a time window from the current state of the character to a near future state. The repeated update of the optimal controller and the stochastic control make it possible to effectively explore various states that the character may have while mimicking the example motion and collect useful training data for supervised learning. Once all the training data is generated, the latter component normalizes the data to remove the disparity for magnitude and units inherent in the data and trains an artificial neural network with a simple architecture for a controller. The experimental results for walking and running motions demonstrate how effectively and fast the proposed framework produces physics-based motion controllers.
The technique for synthesizing reactive motion in real-time is important in many applications such as computer games and virtual reality. This paper presents a dynamic motion control technique for creating reactive motions in a physically based character animation system. The leg to move in the next step is chosen using the direction of external disturbance forces and states of human figures and then is lifted though joint PD control. We decide the target position of the foot to balance the body without leg cross. Finally, control mechanism is used to generate reactive motion. The advantage of our method is that it is possible to generate reactive animations without example motions.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.616-618
/
2001
천의 변형은 가상 현실이나 게임 제작 분야에서 현실감을 증가시키는 측면에서 필수적인 요소들 중의 하나이다. 반면, 옷을 착용하거나 깃발을 매단 캐릭터가 돌발적이면서 급격한 움직임을 나타낼 때에는, 이에 따른 천의 움직임을 원하는 시간내에 자연스럽게 생성하기가 쉽지 않다. 본 논문에서는 천의 사실적인 변형에 있어 필수 요소인 비선형성을 고려하면서도, 돌발적이고 빈번하게 작용하는 외부 힘에 대하여 안정적이고 빠른 위치 기반의 근사 방법을 제안하고자 한다. 또한, 이에 따른 사실성을 유지하기 위하여 스프링의 비선형적인 성분을 기하학적으로 처리하는 방법을 제안한다. 이 방법은 기하학적 관계에 물리적 속성을 반영하여 해결함으로써 시각적으로 받아들일 수 있는(visibly-plausible) 천의 자연스러운 움직임을 생성할 수 있다. 본 논문의 결과로 자동차의 급격한 움직임에도 안정적이고, 자동차가 달리는 방향이나 노면 등의 외부 환경의 변화에도 사실적인 천의 애니메이션을 생성할 수 있다.
Inverse kinematics is a very useful method for control]ing the posture of an articulated body. In most inverse kinematics processes, the major matter of concern is not the posture of an articulated body itself but the position and direction of the end effector. In some applications such as 3D character animations, however, it is more important to generate an overall natural posture for the character rather than place the end effector in the exact position. Indeed, when an animator wants to modify the posture of a human-like 3D character with many physical constraints, he has to undergo considerable trial-and-error to generate a realistic posture for the character. In this paper, the Inductive Inverse Kinematics(IIK) algorithm using a Uniform Posture Map(UPM) is proposed to control the posture of a human-like 3D character. The proposed algorithm quantizes human behaviors without distortion to generate a UPM, and then generates a natural posture by searching the UPM. If necessary, the resulting posture could be compensated with a traditional Cyclic Coordinate Descent (CCD). The proposed method could be applied to produce 3D-character animations based on the key frame method, 3D games and virtual reality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.