• Title/Summary/Keyword: 문제집

Search Result 998, Processing Time 0.03 seconds

Development of Maintenance Scenario Method for Small and Medium-sized Bridges Using Risk Matrix (리스크매트릭스를 활용한 중소규모 교량의 유지관리 시나리오 기법 개발)

  • Park, Hyun-Chan;Shin, Byoung-Gil;Cho, Choong-Yuen;Kim, Young-Min;Chang, Buhm-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.161-168
    • /
    • 2021
  • This paper is a maintenance system for bridge represented by Class 3 and other than by law bridges. Domestic bridge are divided into Class 1 & 2 bridges and Class 3 & other than by law bridges. The number of type 3 and other than by law bridges is very large. But, it is considered to be of relatively low importance compared to Class 1 & 2 Bridge Bridge. So, in this paper is propose a maintenance system and procedure for small & medium-sized bridges. However, because the number of small & medium-sized bridges is large, it is not possible to evaluate the performance of all bridges like Class 1 & 2 bridge. The reason is the lack of manpower and budget. Based on the Risk Matrix method, a maintenance procedure was created to select the bridge for which performance evaluation should be performed first. For this purpose, basic information of the bridge is used. And, the developed maintenance procedures were applied to the bridges in actual use.

A study on the clogging of shield TBM cutterhead opening area according to the characteristics of cohesive soil content (점성토 함량 특성에 따른 shield TBM cutterhead 개구부의 폐색현상에 관한 연구)

  • Bang, Gyu-Min;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Cho, Sung-Woo;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.265-280
    • /
    • 2021
  • Population density due to urbanization is making people interested in underground space development and much interest in TBM construction with low vibration and noise. This led to a lot of research on TBM. However, research on the characteristics of the cutterhead opening of the TBM equipment being occluded under the ground conditions under which it is excavated is insufficient. Accordingly, a study was conducted to investigate clogging of the cutterhead opening during the shield TBM rolling. To identify the clogging of cutterhead openings in SHIELD TBM equipment, the reduced model experiment was divided into clay rate (10%, 30%, 50%, 60%), cutterhead opening rate (30%, 50%, 60%), and cutterhead rotation direction (one-way, two-way) and rotational speed (3 RPM) and conducted in 36 cases. Results of scale model test on shield TBM clogging, it was analyzed that the ground condition containing clay soil increased the clogging effect in both directions than the unidirectional rotation, and that the lower the rotational speed of the cutterhead, the less the clogging effect. Accordingly, the direction of cutterhead rotation, rotational speed and opening rate are calculated by taking into account ground conditions during ground excavation, the clogging effect can be reduced. It is believed to be effective in saving air as the clogging effect is reduced. Therefore, this study is expected to be an important material for domestic use of shield TBM.

An experimental study on the operation mode of rapid flooding protection system in tunnel (축소모형실험을 통한 터널 내 급속침수 차폐자동화 시스템 작동형태에 대한 연구)

  • Kim, Yeon-Deok;Kong, Min-Teak;Hwang, Beoung-Hyeon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1147-1159
    • /
    • 2018
  • This study focuses on the verification of a rapid protection automation system using an inflatable structure. The inflatable structure is an automatic rapid protection system against human and material damage when the subsea tunnel is flooded. Especially, it is essential for construction and operation of subsea tunnels. In this study, we have experimentally verified the rapid protection automation system using the inflatable structure designed for this problem. In order to verify this, a model tunnel with a 40: 1 reduction ratio was constructed, and air pressure of 0.1 bar and 0.15 bar was injected to divide the tunnel according to the expansion rate at 10 sec and 20 sec. According to the results of the study, the protection efficiency was better at 0.15 bar than 0.1 bar when the expansion structure was expanded, and the protection efficiency and influent control efficiency were different according to the pneumatic injection time of the inflating structure. As a result of this study, it was found that the higher the internal air pressure of the inflated structure and the faster the inflation of rate, the more effectively the inflated structure was inflated. As a result of this study, it is necessary to further study the wedge type structure which is useful for the storage method of expansion structure, shape and expansion derivative, inhibition of expansion structure during protection and control of inflow water.

A Study on the Noise and Vibration Damping Performance of RC Hollow Core Slab (중공형 RC 슬래브의 소음 및 진동 감쇠성능에 대한 연구)

  • Kim, Dong Baek;Kim, In Bae;Kim, Jong Hoon;Lee, Jae Won
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.292-300
    • /
    • 2019
  • Purpose: To reduce the noise and vibration of reinforced concrete slab structures, the damping performance is to be performed experimentally after installing hollow core or filling it with liquid. Method: Using the hollow rate as an experimental variable, the damping ratio and stiffness of each test specimen at impact load are obtained to determine the difference between the damping ratio and stiffness of the numerical analysis. In addition, the damping effects are reviewed by comparing the difference in the damping ratio and stiffness of a test specimen filled with liquid 50% of the study. Results: Since the difference in resistance between a specimen with or without hollow core is 5%, it is judged that there is no structural problem, and the injection of liquid into the hollow core can increase the damping ratio, which can reduce noise or vibration. Conclusion: At less than 20% of hollow rate, there was little damping effect, and at 30%, damping effect was found. However, if liquid is injected into the hollow core of the specimen, damping rate is shown to increase, and the injection of liquid into the hollow part is believed to reduce noise or vibration.

Engineering Characteristics of CLSM Using Bottom Ash and Eco-friendly Soil Binder (친환경 고결제와 저회를 활용한 유동성 복토재의 공학적특성)

  • Park, Giho;Kim, Taeyeon;Lee, Yongsoo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • In general, pipe laying works are performed by constructing underground facilities such as pipes and then refilling the rest of the area with sand or soil. However, there are many problems in the compaction process such as difficulties in tampering around the underground facility and low compaction efficiency. Such problems cause deformation and damage to the underground pipes during refilling work and ultimately cause road sinks. Construction methods using CLSM are one of the typical methods to solve these issues, and recently, studies on CLSM using coal ash, which has similar engineering properties as sand, have been actively performed to protect environment and recycle resources. While many studies have been conducted to recycle fly ash in many ways, the demand for recycling bottom ash is increasing as most of the bottom ash is not recycled and reclaimed at ash disposal sites. Therefore, in order to find bottom ash applications using eco-friendly soil binders that are environmentally beneficial and conform with CLSM standards, this study investigated flow characteristics and strength change characteristics of eco-friendly soil binders, weathered granite soil, a typical site-generated soil, bottom ash, and fly ash mixed soil and evaluated the soil pollution to present CLSM application methods using bottom ash.

A Study on Cause Analysis and Countermeasures of Chloride Attack of Reinforced Earth Retaining Walls Installed on Bridge Abutment (염해로 인한 교대부 보강토옹벽 손상 원인 분석 연구)

  • Do, Jong-Nam;Kim, Nag-Young;Cho, Nam-Hun;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.59-64
    • /
    • 2018
  • The damages to the reinforced earth retaining wall are divided into the front wall, foundation, drainage and upper slope. Damage of reinforced earth retaining wall is mainly caused by damage caused by drainage problem in the field. Recently, damage caused by snow removal materials have been occurred. Recently, the amount of snow removal materials used in winter is increasing due to abnormal weather. This chlorides degrades the concrete structure, where the reinforced earth retaining wall was no exception. There has recently been a case in which the front wall of the reinforced earth retaining wall deteriorates due to the chlorides introduced into the back filling portion through the drainage passage. Therefore, in this study, the cause of damages of reinforced earth retaining wall constructed in bridge abutment was analyzed, and an analytical study was conducted on the countermeasure. As a result, it was found that chlorides, which was introduced through the drainage system in the expansion joint of the bridge shift part or the upper structure, is infiltrated into the back part of the reinforced earth retaining wall and damaged. Therefore, it is suggested to improve the drainage system and restored the stiffness of the front wall.

A Study on Self-reliance and Residential Service Needs of Patients with Chronic Mental Illness (만성정신질환자의 자립 및 주거 서비스에 대한 요구도 조사)

  • Jeon, Hyun Ju;Huh, Yu Jeong;Ko, Young-Hoon;Lee, Jae-Hon
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.26 no.2
    • /
    • pp.145-151
    • /
    • 2018
  • Objectives : Residential services are provided to help patients with chronic mental illness, but those have some problems because of provider focused services and uniformized training. So the purpose of the study was to explore residential needs of patients with the chronic mental illness such as chronic schizophrenia. Methods : A survey was conducted on 139 mental illness patients using mental health facilities at Ansan city area in South Korea. We investigated their demographic and social characteristics, the degree of self- reliance and residential service needs. Results : More than half of them had the desire for self-reliance, and they needed job support mostly. They were positive about the use of residential facilities and needed daily living skill and social skill training. Also they preferred day rehabilitation in type of facility. And they wanted to operate in a way that they returned home at the weekend after group home. Conclusions : For facilitating the recovery of patients with chronic mental illness, it would be necessary to provide individualized residential rehabilitation services and to improve existing residential facilities and programs reflected on the patients' needs.

Analyses of Structural Performances for Reinforced Concrete Middle-Rise Residential Building under Construction (중층 규모 철근콘크리트 주거형 건물의 시공 중 구조성능 분석)

  • Ko, Jun-Young;Kim, Jae-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.96-103
    • /
    • 2019
  • Middle-rise reinforced concrete residential buildings account for a large portion of the Korea, and structural performance analysis are needed for problems that could occur during the construction of such buildings. Thus, a middle-rise reinforced concrete residential building with 25 stories are selected as a sample model for structural performance analysis. The structural analyses are performed by dividing a sample model into the construction stage models of the 5th, 10th, 15th, 20th and 25th floors and the completion stage models with the design completed. For the comparisons of structural performances, Eigenvalue analysis results and lateral-load-resisting capabilities and structural design performances of structural members are analyzed. As a result of analyses, it was confirmed that both the construction and completion stage do not exceed KBC criteria limits at the lateral displacement and story drift ratio, and structural design performances of structural members confirm structural safety in all components except for some members of the wall. Therefore, it was concluded that if structural stability is obtained during the completion stage of a middle-rise reinforced concrete residential building, structural stability is secured under construction.

Repair Cost Analysis for Chloride Ingress on RC Wall Considering Log and Normal Distribution of Service Life (로그 및 정규분포 수명함수를 고려한 콘크리트 벽체의 염해 보수비용 산정)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.10-19
    • /
    • 2019
  • Management plan with repairing is essential for RC structures exposed to chloride attack since durability problems occur with extended service life. Conventionally deterministic method is adopted for evaluation of service life and repair cost, however more reasonable repair cost can be obtained through continuous repair cost from probabilistic maintenance technique. Unlike the previous researches considering only normal distribution of life time, PLTFs (Probabilistic Life Time Function) which can be capable of handling log and normal distributions are attempted for initial and repair service life, and repair cost is evaluated for OPC and GGBFS concrete. PLTF with log distributions in initial service life is more effective to save repair cost since it is more dominant after average than normal distribution. Repair cost in GGBFS concrete decreases to 30% of OPC concrete due to longer initial service life and lower repairing event. The proposed PLTF from the work can handle not only normal distributions but also log distributions for initial and repair service life, so that it can provide more reasonable repair cost evaluation.

A Study on the Applicability of Heavyweight Waste Glass and Steel Slag as Aggregate in Heavyweight Concrete (고밀도 폐유리와 제강슬래그의 중량 콘크리트 골재로의 적용성에 관한 연구)

  • Choi, So-Yeong;Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2019
  • The many countries are facing the shortage of natural resources, and the supply of aggregates are being exhausted. To consider this situation a variety of studies were performed for the development of alternative resources. In particular, high density filler material was used for shielding radioactive waste, large amount of natural aggregates are required in order to produce filler material. Also, in order to improve the shielding performance of filler material, it is required to increase the density of the filler material. Therefore, in this study was carried out to provide basic data for expanding the feasibility of high density industrial waste resource as aggregate in heavyweight concrete. From the test results, OPC case, concrete strength decreased by using heavyweight waste glass as fine aggregate, however, it is improved by using mineral admixture as binder. Therefore, when the heavyweight waste glass and steel slag are applied to heavyweight concrete, it is desirable to use mineral admixture, especially to use BFS than FA. Meanwhile, when the steel slag was replaced as coarse aggregate of heavyweight concrete, elasticity of modulus and radiation shielding performance can be improved owing to high density of steel slag.