Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.1310-1313
/
2011
유사문자열 검색이란 문자열 집합에서 주어진 문자열과 유사한 문자열들을 검색하는 것으로 정보검색, 데이터 클리닝 등의 분야에서 활용되고 있다. 효율적인 유사문자열 검색을 위해 사전에 문자열 집합에 대한 역리스트를 구성하고 문자열이 주어졌을 때, 주어진 문자열에 관련된 역리스트를 병합하여 유사도 기준을 만족하는 문자열을 찾는다. 이때 비용을 줄이기 위해 일부의 역리스트만 병합하고 나머지 역리스트에 대해서는 이진탐색을 하는 방법이 있다. 본 논문에서는 역리스트를 이진탐색할 때, 불필요한 탐색구간을 제거하여 역리스트 탐색 비용을 줄이는 방법을 제안한다.
Existing techniques for string similarity search first generate a set of candidate strings and then verify the candidates. The efficiency of string similarity search is highly dependent on candidate generation methods. State of the art techniques select fixed length q-grams from a query string and generate candidates using inverted lists of the selected q-grams. In this paper, we propose a technique to generate candidates using variable length grams of a query string and develop a dynamic programming algorithm that selects an optimal combination of variable length grams from a query string. Experimental results show that the proposed technique improves the performance of string similarity search compared with the existing techniques.
With the development of smart transportation, people are likely to find their paths by using navigation and map application. However, the existing retrieval system cannot output the correct retrieval result due to the inaccurate query. In order to remedy this problem, set-based POI search algorithm was proposed. Subsequently, additionally a method for measuring POI name similarity and POI search algorithm supporting classifying duplicate characters were proposed. These algorithms tried to compensate the insufficient part of the compensate set-based POI search algorithm. In this paper, accuracy improvement methods for measuring string similarity in POI data retrieval system are proposed. By formulization, similarity measurement scheme is systematized and generalized with the development of transportation. As a result, it improves the accuracy of the retrieval result. From the experimental results, we can observe that our accuracy improvement methods show better performance than the previous algorithms.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.443-448
/
2018
웹검색 결과의 품질 향상을 위해서는 질의의 정확한 매칭 뿐만이 아니라, 서로 같은 대상을 지칭하는 한글 문자열과 영문 문자열(예: 네이버-naver)의 매칭과 같은 유연한 매칭 또한 중요하다. 본 논문에서는 문장대문장 학습을 통해 영문 문자열을 한글 문자열로 음차변환하는 방법론을 제시한다. 또한 음차변환 결과로 얻어진 한글 문자열을 동일 영문 문자열의 다양한 음차변환 결과와 매칭시킬 수 있는 발음 유사성 기반 부분 매칭 방법론을 제시하고, 위키피디아의 리다이렉트 키워드를 활용하여 이들의 성능을 정량적으로 평가하였다. 이를 통해 본 논문은 문장대문장 학습 기반의 음차 변환 결과가 복잡한 문맥을 고려할 수 있으며, Damerau-Levenshtein 거리의 계산에 자모 유사도를 활용하여 기존에 비해 효과적으로 한글 키워드들 간의 부분매칭이 가능함을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.454-456
/
2003
UMLS(2003AA edition 기준)의 메타시소러스는 다국어를 지원하며 875.233개의 개 (concept)과 2,146,897개의 개념명(concept name)을 포함한다. 현재 UMLS 메타시소러스 검색을 제공하는 PubMed나 NLM에서는 UMLS에서는 개념명에 존재하지 않는 잘못된 질의나, 잘못된 구문 또는 개념명의 일부를 이용한 검색이 불가능하다. 이는 사용자가 UMLS에서 정보를 얻기 위해서는 정확한 의학용어를 숙지해야 되며. UMLS 메타시소러스의 데이터가 잘못 되었을 경우 정보를 얻을 수 없다. 본 연구에서는 이러한 문제점을 보완하기 위해서 자연어처리에서 연구되고 있는 문자열 간의 유사도 측정방식을 적용하여 잘못된 질의어에 대한 자동수정 기능을 이용한 메타시소러스 검색방법을 제안한다. 제안한 방법에서는 질의어를 자동수정하기 위하여 철자사전을 자동으로 추출하고 문자열 비교알고리즘을 도입하여 질의어와 철자사전간의 용어의 유사도를 측정한다. 유사도에 의하여 얻어진 용어를 메타시소러스의 형식에 맞게 변환하여 질의에 대한 최적의 결과를 얻을 수 있도록 한다. 제안된 방법의 성능을 평가하기 위해서 최근(2003년 8월) bi-gram 방식을 도입한 NLM에서의 시스템과 비교 평가한다.
Proceedings of the Korean Information Science Society Conference
/
2005.11a
/
pp.970-972
/
2005
유전자 데이터베이스의 서열의 길이가 수백만에서 수백억 정도의 대용량 텍스트이기 때문에 기존의 Smith-waterman 알고리즘으로 정확한 서열의 유사성을 검색하는 것은 매우 비효율적이다. 따라서 빠른 유사성 검색을 위해 데이터베이스에 저장된 문자열에 대해 특정 길이의 모든 부분문자열에 나타나는 문자의 출현 빈도를 이용한 휴리스틱 방법들이 제안되었다. 이러한 방법들은 질의 서열과 일치될 가능성이 높은 후보들만을 추출한 후 이들 각각에 대하여 질의 서열과의 일치 여부를 조사하므로 빠르게 유사성 검색을 할 수 있다. 그러나 이 방법은 문자의 출현 빈도만을 사용하므로 서로 다른 서열을 같은 서열로 취급하는 단점이 있어 정확도가 Smith-Waterman 알고리즘에 비해 떨어진다. 본 논문에서는 문자가 부분문자열에 나타나는 위치 정보를 포함하여 문자의 출현빈도를 인덱싱함으로써 질의 처리를 효율적으로 수행하는 알고리즘을 제안한다. 실험결과 제안된 알고리즘은 문자 빈도만을 사용하는 알고리즘에 비해 $5\~15\%$정도 정확성이 향상되었다.
An inverted index structure is widely used for efficient string similarity search. One of the main requirements of similarity search is a fast response time; to this end, most techniques use an in-memory index structure. Since the size of an inverted index structure usually very large, however, it is not practical to assume that an index structure will fit into the main memory. To alleviate this problem, we propose a novel technique that reduces the size of an inverted index. In order to reduce the size of an index, the proposed technique rearranges data strings so that the data strings containing the same q-grams can be placed close to one other. Then, the technique encodes those multiple strings into a range. Through an experimental study using real data sets, we show that our technique significantly reduces the size of an inverted index without sacrificing query processing time.
Determining the similarity between two strings can be applied various area such as information retrieval, spell checker and spam filtering. Similarity calculation between Korean strings based on dynamic programming methods firstly requires a definition of the similarity between phonemes. However, existing methods have a limitation that they use manually set similarity scores. In this paper, we propose a method to automatically calculate inter-phoneme similarity from a given set of variant words using a PAM-like probabilistic model. Our proposed method first finds the pairs of similar words from a given word set, and derives derivation rules from text alignment results among the similar word pairs. Then, similarity scores are calculated from the frequencies of variations between different phonemes. As an experimental result, we show an improvement of 10.1%~14.1% and 8.1%~11.8% in terms of sensitivity compared with the simple match-mismatch scoring scheme and the manually set inter-phoneme similarity scheme, respectively, with a specificity of 77.2%~80.4%.
Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.1298-1301
/
2011
텍스트 데이터는 표현 방식의 차이, 타이핑 오류 등을 포함하고 있어 정확히 일치하는 검색으로는 유용한 정보를 얻기 어렵다. 따라서 유사도 기반 검색 방법이 많이 연구되고 있으며 효율적인 유사도 기반 검색을 위해 텍스트 데이터에 대한 역 리스트를 구성한다. 그리고 이를 병합하여 질의와 일정 기준 이상 유사한 데이터를 찾는다. 본 논문에서는 역 리스트 병합 과정에서 역 리스트의 탐색 비용을 줄이기 위해 비트맵 필터를 사용하는 기법을 제안한다. 비트맵 필터를 사용하여 역 리스트의 탐색 여부를 결정하여 불필요한 역 리스트 탐색을 회피함으로써 역 리스트 병합 비용을 줄인다. 실험을 통하여 제안된 기법이 기존의 연구에서 제안된 역 리스트 병합 알고리즘의 성능을 30~40% 정도 개선함을 보인다.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2006.06a
/
pp.656-699
/
2006
웹 서비스는 사용자가 다양한 인터페이스 정의와 교환 메시지 형식을 가지는 서비스를 개발하는데 있어 보다 효과적이고 단일화된 방법을 제공한다. 웹 서비스에서 인터페이스 정의와 교환 메시지 형식은 WSDL 통해 정의되며, 이 WSDL 문서를 통해 이용할 서비스의 인터페이스와 교환 메시지 형식을 파악하여 빠르게 해당 서비스를 이용할 수 있도록 한다. 이러한 웹 서비스의 등록과 검색을 위해서는 레지스트리 방식을 이용한다. 개발된 서비스에 관한 설명 정보는 서비스 제공자에 의해 작성되어 레지스트리에 등록되며, 서비스 요청자는 레지스트리로부터 필요한 서비스를 검색하여 이용한다. UDDI는 웹 서비스를 위한 분산 레지스트리 표준으로 웹 서비스를 위한 등록과 검색 메커니즘을 제공한다. UDDI에서 지원하는 검색 메커니즘은 크게 키워드 검색과 비즈니스와 서비스에 대한 카테고리별 검색으로 구분된다. 키워드 기반 검색은 SQL LIKE 연산을 통해 비즈니스와 서비스의 이름에 대하여 부분 문자열이 일치하는지 검사하는 방식으로 이루어진다. 이러한 UDDI 의 키워드 기반 검색은 등록된 서비스의 이름 이외의 내용 정보에 대한 검색을 지원하지 못하므로 효과적인 검색을 지원하지 못하는 단점을 가진다. 또한 UDDI는 WSDL 문서의 내용에 대한 검색은 지원하지 못하는 단점을 가진다. 이에 따라 현대의 서비스 검색은 서비스의 이름에 대한 검색만을 지원한다. 이러한 현재의 웹 서비스 검색에서의 문제점을 해결하기 위해서는 UDDI 에 등록된 설명 정보와 WSDL 문서 모두에 대한 내용 기반의 검색을 지원하고 검색 결과를 순위화 (ranking)하여 제시할 수 있는 검색 엔진이 요구된다. 이 논문은 이러한 문제점들을 해결할 수 있도록 내용 기반 검색을 지원할 수 있는 웹 서비스를 위 한 검색 엔진을 제안한다. 제안한 검색 엔진은 UDDI 등록 정보에 대하여 내용 기반 검색을 수행할 수 있도록 벡터 공간 모델을 활용한 유사도 비교 방법을 이용한다. 또한 UDDI 등록 정보 외에 실질 적인 서비스의 인터페이스와 교환 메시지 형식에 대한 비교의 수행을 위하여 WSDL 문서에 대한 유사도 비교를 수행한다. 유사도 측정시 UDDI 등록 정보와 WSDL 문서와 같은 계층적인 문서 구조를 검색 결과에 반영할 수 있는 방법을 지원한다. 지원하는 검색 방법은 두 가지로 키워드 검색과 함께 텀플릿 검색을 지원한다. 템플릿 검색은 서비스의 등록 정보 외에 인터페이스 정의가 얼마나 일치하는지를 비교하기 위해 WSDL 문서에 대한 유사도를 비교할 수 있도록 한다. 이러한 검색의 지원을 통해 제안한 웹 서비스를 위한 검색 엔진은 기존의 레지스트리를 이용한 검 색 방법보다 정확한 검색 결과를 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.