통계학과 기계학습의 다양한 기법을 이용하여 문서집합을 군집화하기 위해서는 우선 군집화분석에 적합한 데이터구조로 대상 문서집합을 변환해야 한다. 문서군집화를 위한 대표적인 구조가 문서-단어행렬이다. 각 문서에서 발생한 특정단어의 빈도값을 갖는 문서-단어행렬은 상당부분의 빈도값이 0인 희소성문제를 갖는다. 이 문제는 문서군집화의 성능에 직접적인 영향을 주어 군집화결과의 성능감소를 초래한다. 본 논문에서는 문서-단어행렬의 희소성문제를 해결하기 위하여 인자분석을 통한 인자점수를 이용하였다. 즉, 문서-단어행렬을 문서-인자점수행렬로 바꾸어 문서군집화의 입력데이터로 사용하였다. 대표적인 문서군집화 알고리즘인 자기조직화지도에 적용하여 문서-단어행렬과 문서-인자점수행렬에 대한 문서군집화의 결과들을 비교하였다.
이 논문은 OCR(Optical Character Reader)로 인식된 한글 문서에서의 오인식 경향을 분석하고, 이를 이용한 한글 단어 검색 방법을 제안한다. OCR로 인식된 많은 야의 한글 문서를 기반으로 자모별 인식 빈도수를 계산하고 이를 바탕으로 초성, 중성, 중성별 인식 혼동 행렬(confusion matrix)을 구성하였다. 또한 인식 정보를 적절히 이용하기 Bayes 정리를 이용하였다. 질의어에 대한 오인식 단어의 검색 방법을 제시하고 혼동 행렬과 이 검색 방법을 바탕으로 OCR 기반 단어 검색 시스템을 구축하였다.
Kyonggi21Search시스템은 GIS와 웹을 통합한 지역정보 검색 시스템이다. 웹과 GIS를 연동하여 지리정보를 검색하기 위해 웹 문서에서 지역관련 색인어를 추출하고, 색인어간의 관련성을 계산한다. "Kyonggi21Search"시스템에서는 웹 문서에 많이 나타나는 일반적인 단어보다는, 많은 문서에 나타나지 않는 지리적 문화적인 단어들 간의 관련성을 찾는 것이 더 중요한데, 본 연구에서는 단어들 간의 관련성을 찾는데 연관규칙과 연관클러스터를 이용하여 연관도를 계산한다. 그리고 이런 단어들의 관련성을 찾는데는 연관 클러스터를 이용하는 것이 더 적합하다는 것을 보여준다. 한편 웹 문서와 색인어를 이용하여 만든 행렬은 희소행렬이라는 점을 이용하여 연관 클러스터 방법의 단점인 높은 계산량을 줄이는 최적화 방법을 제안한다.
문서의 텍스트를 바탕으로 각 문서가 속한 분류를 찾아내는 문서 분류는 자연어 처리의 기본 분야 중 하나로 주제 분류, 감정 분류 등 다양한 분야에 이용될 수 있다. 문서를 분류하기 위한 신경망 모델은 크게 단어를 기본 단위로 다루는 단어 수준 모델과 문자를 기본 단위로 다루는 문자 수준 모델로 나누어진다. 본 논문에서는 문서를 분류하는 신경망 모델의 성능을 향상시키기 위하여 문자 수준과 단어 수준의 모델을 혼합한 신경망 모델을 제안한다. 제안하는 모델은 각 단어에 대하여 문자 수준의 신경망 모델로 인코딩한 정보와 단어들의 정보를 저장하고 있는 단어 임베딩 행렬의 정보를 결합하여 각 단어에 대한 특징 벡터를 만든다. 추출된 단어들에 대한 특징 벡터를 바탕으로, 주의(attention) 메커니즘을 이용한 순환 신경망을 단어 수준과 문장 수준에 각각 적용하는 계층적 신경망 구조를 통해 문서를 분류한다. 제안한 모델에 대하여 실생활 데이터를 바탕으로 한 실험으로 효용성을 검증한다.
주어진 비음수 데이터를 두 개의 비음수 행렬의 곱의 형태로 표현하는 비음수 행렬 분해(Nonnegative Matrix Factorization)는 비음수 데이터의 다변량 분석에서 폭넓게 사용되고 있는 방법이다. 비음수 행렬 분해는 집단화(Clustering), 특히 문서의 집단화에서 유용하게 쓰일 수 있다. 본 논문에서는 주어진 문서들로부터 구성된 단어-문서 행렬을 두 개의 비음수 행렬의 곱으로 분해할 때, 그 중 하나의 행렬에 직교 제한을 주는 비음수 행렬의 직교 분해(Orthogonal Nonnegative Matrix Factorization) 방법을 다룬다. 현존하는 비음수 행렬의 직교 분해 방법은 직교 제한과 관련된 항을 더해주는 방식을 사용하지만, 여기서는 Stiefel 다양체 위에서의 실제 기울기를 직접 구하여 곱셈의 업데이트 알고리즘을 유도하였다. 다양한 문서 데이터에 대한 실험을 통해 새롭게 유도된 비음수 행렬의 직교 분해 방법이 기존의 비음수 행렬 분해나 기존의 비음수 행렬의 직교 분해보다 문서 집단화에서 우수한 성능을 나타냄을 보였다.
Journal of the Korean Data and Information Science Society
/
제26권1호
/
pp.151-159
/
2015
이 논문에서는 텍스트마이닝 (text mining) 기법을 이용하여 한국데이터정보과학회지에 게재된 논문의 영어초록을 분석하였다. 먼저 다양한 방법을 통해 단어-문서 행렬 (term-document matrix)을 생성하고 이를 사회연결망 분석 (social network analysis)을 통해 시각화하였다. 또한 토픽을 추출하기 위한 방법으로 LDA (latent Dirichlet allocation)와 CTM (correlated topic model)을 사용하였다. 토픽의 수, 단어-문서 행렬의 생성방법에 따라 엔트로피 (entropy)를 통해 토픽 추출 모형들의 성능을 비교하였다.
최근 한국어 문서에는 한국어뿐만 아니라 외래어 표기 등이 혼합되어 사용되고 있다. 외래어 표기는 한 단어에 대해 한 개만 존재하는 것이 아니라 여러 개의 다른 표기로 사용되고 있다. 이러한 표기상 불일치는 하나의 단어가 다른 개념으로 인식되어 정보검색 시스템의 성능 저하의 원인이 된다. 따라서 정보검색 시스템의 성능 향상을 위해 여러 외래어 표기를 같은 개념으로 인식하는 시스템이 필요하다. 본 논문에서는 한국어 자모 혼동행렬을 기반으로 한 유사 외래어 표기 검출 기법을 제안한다. 제안한 기법에 따라 유사 외래어 표기를 검출해줌으로써 정보검색 시스템의 성능을 향상할 수 있다.
본 시스템은 LSA 또는 벡터공간 모델 방식을 이용하여, 문장 대 문장, 문서 대 문장, 다중 문서 간유사도 분석을 수행한다. 이는 문서의 특수문자를 제거한 뒤, 형태소 분석을 기반으로 단어를 추출하여 TF-IDF 가중치를 추출한뒤 행렬 계산을 통하여 Cosine 계산식을 사용하여 유사성을 검출하는 단계로 구성된다. 제시된 기법은 2개의 오픈소스를 이용하며, x86 기반 64bit Windows에서 개발되었으며, 60% 이상의 정확도를 나타낸다.
본 논문은 기존의 TextRank 알고리즘에 상호정보량 척도를 결합하여 군집 기반에서 키워드 추출하는 LSI-based ClusterTextRank 기법과 추출된 키워드를 Latent Semantic Indexing(LSI)을 이용한 연관망 구축 기법을 제안한다. 제안 기법은 문서집합을 단어-문서 행렬로 표현하고, 이를 LSI를 이용하여 저차원의 개념 공간으로 차원을 축소한다. 그 다음 k-means 군집화 알고리즘을 이용하여 여러 군집으로 나누고, 각 군집에 포함된 단어들을 최대신장트리 그래프로 표현한 후 이에 근거한 군집 정보량을 고려하여 키워드를 추출한다. 그리고나서 추출된 키워드들 간에 유사도를 LSI 기법을 통해 구한 단어-개념 행렬을 이용하여 계산한 후, 이를 키워드 연관망으로 활용한다. 제안 기법의 성능을 평가하기 위해 여행 관련 블로그 데이터를 이용하였으며, 제안 기법이 기존 TextRank 알고리즘보다 키워드 추출의 정확도가 약 14% 가량 개선됨을 보인다.
오늘날 인터넷 검색은 하루가 다르게 발전되고 있다. 주로 키워드 매칭에 의존을 둔 지금의 검색 서비스들은 사용자 중심의 아이템들을 개발해 정보검색의 경과시간 및 결과의 분류면에서 우수함을 보여주고 있다. 질의어의 의미에 유사한 검색은 아직은 발전하는 단계로, 내용에 기반을 둔 검색 환경에 초점이 맞춰지고 있다. 이와 관련하여 행렬의 특이치 분해(SVD)를 이용한 잠재적 의미 색인 기법(LSI)을 본 연구에서 다루고자 한다. 구축한 시스템의 성능 평가는 재현도 계산으로 비교되었는데 작은 크기의 특이값(singular value)들 생략에 의한 SVD의 성능과 그것을 재이용, 질의어에 대한 의미 구조상 근접한 용어들을 찾아 질의어를 확장한 후 적합한 문서들의 검색을 사용한 특이값 개수, 유사단어 확장 개수를 달리하여 실험하였다. 실험 결과, 특이값 2개를 사용한 잠재적 의미 색인이 특이값 3개를 사용한 잠재적 의미 색인보다 보다 나은 성능을 보였다. 그리고 조건을 달리한 모든 잠재적 의미 색인의 경우 단어 매칭에 의한 적합문서 검색보다 별 뚜렷한 나은 결과는 보이지 않았다. 하지만 의미적으로 관계가 깊은 유사어들을 찾아냈고, 의미적으로 가장 관계 깊은 문서를 대부분의 경우에서 순위 1위로 찾아내는 부분적 우수함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.