• 제목/요약/키워드: 문서 추천

검색결과 123건 처리시간 0.03초

웹 문서 형식과 클러스터 내의 문서 유사도를 이용한 동적 추천 시스템 (Dynamic Recommendation System Using Web Document Type and Document Similarity in Cluster)

  • 김진수;김태용;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.274-276
    • /
    • 2001
  • 기존의 여러 동적 추천 시스템에서 사용자들의 브라우징 패턴을 반영하려고 노력하였다 .그러나 대부분의 동적 추천 시스템들은 웹 문서들의 형식이나 웹 문서들 간의 연관성을 고려하지 않고, 사용자들의 브라우징 패턴에만 근거하기 때문에 연관성이 없거나 의미 없는 웹 문서들에 대한 추천까지 제공하는 문제점을 지니고 있다. 본 논문에서는 웹 문서들 사이의 유사도와 로그 파일 안에 들어있는 사용자들이 패턴을 이용하여 웹 문서 자체의 형식에 따라 연관된 웹 문서뿐만 아니라 순차적인 특성을 가진 웹 문서를 추천 문서로 제공한다. 이때 추천 웹 문서의 형식이 탐색 페이지이면 사용자 브라우징 순차 패턴 DB 중에서 사용자들이 자주 항해하는 순차적인 특성을 갖는 웹 문서까지 제공하는 동적 추천 시스템을 제안한다.

  • PDF

코사인 유사도 기법을 이용한 뉴스 추천 시스템 (SNS news Recommendation by Using Cosine Similarity)

  • 김상모;김형준;한인규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.163-166
    • /
    • 2013
  • 사용자별로 SNS/RSS 구독 뉴스 분석을 통해 사용자가 관심이 있는 새로운 뉴스를 추천해 주는 시스템을 설계하고 구현한다. 뉴스 추천 시스템의 설계를 위해 전체 시스템에서 사용자와 서버에서의 작업을 명세하고, 이중에 주요 기능을 담당하는 부분을 구현한다. 구현된 주요 기능은 선호 문서가 들어왔을 때 특징을 추출하고 이를 저장하는 것과 새로운 문서가 들어왔을 때 선호 문서군과 얼마나 유사한지 판별하여 문서에 대한 추천 여부를 결정하는 것이다. 선호 문서의 특징 추출에 대해서는 형태소 분석을 통해 단어와 빈도를 추출하고 이를 누적하여 저장한다. 또한, 새로운 문서가 들어왔을 때 코사인 유사도를 계산하여 사용자가 선호하는 학습문서와의 유사도 비교를 통해 문서 추천 여부를 결정한다. 구현된 시스템에서 실제로 연관된 선호 문서군을 학습시키고, 연관된 새로운 문서 혹은 연관되지 않은 새로운 문서에 대한 추천 여부를 비교하는 것으로 시스템 정확도를 파악한다.

  • PDF

효과적인 웹 문서 추천을 위한 동적 사용자 프로파일 생성 기법 (Dynamic User Profile Creation Method for Effective Recommendation for Documents on the Web)

  • 윤윤경;서정연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.453-455
    • /
    • 2000
  • 기하급수적으로 증가하는 인터넷의 정보량에서 최적의 정보를 찾고자 하는 사용자의 요구가 증가함에 따라 개별적 사용자에게 필요한 정보만을 제공하는 것이 필요하다. 이러한 사용자의 요구를 충족시키기 위해 사용자의 행동을 관찰하고 학습하여 사용자 대신 문서를 수집하는 웹 문서 추천 에이전트의 필요성이 대두되었다. 본 논문에서는 웹 문서 추천에이전트에서 사용되는 프로파일을 효과적으로 생성하고 학습하기 위한 문서 표현 방법, 특징 선택법을 제안한다. 제안된 문서 표현 방법은 슬라이딩 윈도우 방법을 통해 인접한 단어쌍의 문맥 정보를 이용하고, 의존 구조를 이용하며 사용자의 관심 변화에 빨리 적응 할 수 있도록 시간에 대한 가중치를 반영한다. 제안된 방법으로 프로파일을 구성한 웹 문서 추천 에이전트는 사용자의 관심 분야를 효과적으로 반영하고 관심 변화에 빨리 적응하여 사용자에게 알맞은 문서를 추천한다.

  • PDF

유머문서 추천을 위한 기계학습 기법 (A Learning Model for Recommendation of Humor Documents)

  • 이종우;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.253-255
    • /
    • 2001
  • 인터넷을 통한 사용자의 선호도를 분석하고 협력적 여과 및 내용기반 여과 기술을 결합 이용하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. 유머문서 추천 기술은 다양한 아이템에 대한 여과 및 추천 기술로 확장되어 인터넷을 통한 과다 정보 시대에 필요한 소프트봇 혹은 지능형 에이전트 기술에 적용될 수 있다. MrHumor 추천시스템은 적응형 학습 시스템으로서 새로운 사용자의 선호도에 대한 학습량과 추천시기에 따라 이용할 추천방식이 다른 성능을 보이는데 여러 가지 상황에서도 적절한 동작을 보이기 위하여 MrHumor에서는 은닉변수 모델을 이용하여 사용자의 인구통계적 정보와 문서의 내용적 특징간의 관계를 학습하여 초기 추천을 행하고 SVM을 이용하여 개인의 선호도를 학습한 내용 기반의 여과와 적응형 k-NN모델을 이용한 협력적 여과를 결합하여 추천을 수행한다. 제안된 방식에 의한 추천 성능은 3방식이 각각 이용된 경우에 비해 안정적이고 높은 예측 정확도를 보인다.

  • PDF

은닉 변수 모델을 이용한 문서 추천 (Learning Model for Recommendation of Humor Documents)

  • 이종우;장병탁
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.514-519
    • /
    • 2002
  • 우리는 유머문서의 추천을 위해서 문서 정보, 사용자 정보, 공통 등급매김 정보 등을 모두 이용하는 4 개의 관찰 변수와 이들간 관계의 학습을 위한 은닉변수를 사용한 확률모델을 구축하였다. 이 모델은 학습된 은닉 변수와 가시 변수 간의 관계를 통해 누락 관찰 데이터에 대해서도 추정값을 유도해 낼 수 있으므로 등급매김 정보가 부족하거나 새로운 사용자와 문서의 도입시에 안정적인 추천 성능을 보여 줄 수가 있다. 또한 확률 모델의 학습을 위해서 EMl 알고리즘을 이용하였는데 저평가된 데이터의 이용도를 높이기 위해서 추천을 반대하는 확률 모델을 따로 두고 이들간에 분류모델(classification model)을 두어서 추정값을 분류해내는 방식을 취한다.

  • PDF

사용자 군집을 이용한 개인화 된 웹 페이지 추천 (The personalized web page using the Users clustering method)

  • 이은경;이기현;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.241-243
    • /
    • 2002
  • 기존의 웹 로그를 이용한 추천 System에서의 추천 문서 집합은 웹 페이지의 연관성과 웹 문서 사이의 거리를 이용하여 사용자들에게 추천 문서 집합을 제공해 주는 방식을 사용하였다. 이 방법에 의하면 추천 폐이지로 제공되는 페이지는 사용자별 연관성이 고려되지 않으므로 모든 사용자들이 웹 페이지의 연관성안을 이용한 폐이지를 추천 받는다. 따라서 처음 웹사이트를 방문한 새로운 사용자들에게는 추천해주는 폐이지는 사용자가 보고 있는 웹 페이지의 연관성에 의한 웹 페이지만을 추천 받게 되므로 생각하지 못했던 폐이지나 비슷한 취향을 가진 사용자들이 방문을 했던 페이지에 대해서는 추천 받지 못한다는 문제점을 가지고 있다. 따라서 본 논문에서는 동일한 폐이지를 방문한 사용자별로 클러스터링 하여 같은 그룹에 속한 사용자들의 브라우징 패턴 정보를 발견, 분석화 하여 DB에 저장하였으며, 새로운 사용자에 대해서 웹 페이지 추천 집합을 제공하였다.

  • PDF

Methodology for Search Intent-based Document Recommendation

  • Lee, Donghoon;Kim, Namgyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.115-127
    • /
    • 2021
  • 방대한 데이터 가운데 사용자가 원하는 정보를 단번에 찾아내는 것은 결코 쉬운 일이 아니다. 이로 인해 사용자의 문서 열람 이력을 바탕으로 사용자 선호를 고려해 문서를 추천하는 다양한 방법들이 제안되었다. 하지만 기존에 활용된 문서 열람 이력 기반 문서 추천 방법론은 문서를 누가 열람했는지의 정보만을 활용할 뿐, 사용자가 해당 문서를 열람하게 된 의도(Intent)를 충분히 활용하지 못했다는 한계를 갖는다. 따라서 본 연구에서는 해당 문서를 누가(Who) 읽었는지의 정보가 아닌 해당 문서를 왜(Why) 읽었는지의 정보를 활용하는 검색 의도 기반 문서 추천 방안을 제시하고자 한다. 제안 방법론의 우수성을 확인하기 위해 국내 전자상거래 플랫폼 기업인 'C' 사의 실제 사용자 검색 이력 239,438건을 분석한 실험을 수행하였으며, 실험 결과 제안 방법론이 기존의 내용 기반 추천 모델 및 단순 열람 이력 기반 추천 모델에 비해 우수한 성능을 보임을 확인하였다.

한국어 시소러스를 이용한 웹 문서 추천 에이전트 (A Web-document Recommending System using the Korean Thesaurus)

  • 서민혜;이성욱;서정연
    • 한국정보통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.103-109
    • /
    • 2009
  • 우리는 사용자의 행동을 관찰하고 학습하여 사용자 대신에 문서를 수집 분석함으로써 사용자에게 필요한 정보만을 추출하여 제공하는 웹 문서 추천 에이전트 시스템을 개발한다. 또한 우리는 이 시스템에 한국어 시소러스를 이용한 질의어 확장 방법의 적용을 제안한다. 한국어 시소러스를 이용한 질의어 확장을 위해, 새로운 웹 문서를 검색하기 위해 생성된 질의어를 한국어 시소러스를 통하여 그 하의어들을 찾아 후보 집합을 생성해 주고, TF-IDF와 상호 정보량을 이용하여 후보 집합 안에 있는 단어 들 중에서 질의어와 가장 많은 관련 정보를 가지고 있는 단어를 추출함으로써 질의어를 확장해 주었다. 확장되지 않은 질의어만으로 웹 문서를 추천하게 되면 추천된 웹 문서의 수는 극히 제한적이지만, 질의어를 확장함으로써 보다 더 많은 유용한 웹 문서를 사용자에게 추천 및 제공 할 수 있다.

PCA 및 적응형 k-NN을 이용한 유머문서의 추천 (Humor Document Recommendation using Adaptive K-NN with PCA)

  • 이종우;장병탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.133-136
    • /
    • 2000
  • 우리는 인터넷을 통한 사용자의 선호도(preference)를 분석하고 협력적 여과 기술을 학습하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. MrHumor에서는 사용자집합이 유머문서 집합에 대하여 보여준 등급매김값을 토대로 사용집합의 백터공간(vector space)를 설정하고 노이즈에 강하면서 효율적인 학습을 위해 선형 PCA를 이용하여 축소된 2차원 공간상에서 유머문서의 통계적 특성을 반영하여 적응형 k-NN으로 지엽성을 적적히 조절하여 새로운 문서에 대한 선호도를 추정하게 된다.

  • PDF

웹 로그 마이닝을 이용한 웹 문서 예측 시스템 (Web Document Prediction System by using Web Log Mining)

  • 이범석;황병연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.97-99
    • /
    • 2005
  • 웹 문서 수의 급격한 증가는 사용자로 하여금 방대한 양의 웹 문서들로부터 필요한 정보를 선별하기 위한 시간과 비용을 낭비하게 만들었다. 따라서 이러한 문제를 해결하기 위한 연구의 필요성이 점차 증가하였는데, 그 중 웹 서버 로그 데이터에 마이닝 기법을 적용하여 사용자들의 사이트 내 문서의 접근 패턴을 분석하고, 그 데이터를 이용하여 동적으로 변화하는 적응형 웹 사이트를 제공하려는 것이 대표적인 연구 사례이다. 본 논문에서는 웹 서버 로그 마이닝을 이용하여 사용자가 필요로 하거나, 관심을 가지고 있는 페이지를 예측하여 추천해 주는 시스템에 대해 소개한다. 이러한 시스템을 구현하기 위해 순차 패턴 마이닝이나 빈발 에피소드 발견 기법 등의 알고리즘을 사용할 수 있다. 제안하는 시스템에서는 사용자 접근 패턴을 분석할 때 순차 패턴 마이닝 기법을 사용하고, 사용자의 이동 패턴을 근거로 웹 문서를 예측하여 추천해줄 때에는 에피소드 발견 기법에서의 window 개념을 이용한다. 본 논문에서 제안한 시스템은 웹 문서를 사용자가 머물었던 시간에 따라 관심 있는 문서와 지나간 문서로 구분하여 관심 있는 문서에 대해서안 마이닝을 수행한다. 또한 일정한 크기를 갖는 History window에 의해 다음 문서를 추천해주기 때문에 사용자의 모든 로그를 저장하지 않으므로 보다 효율적이다.

  • PDF