• Title/Summary/Keyword: 문서 벡터

Search Result 239, Processing Time 0.03 seconds

Automatic Document Classification by Term-Weighting Method (범주 대표어의 가중치 계산 방식에 의한 자동 문서 분류 시스템)

  • 이경찬;강승식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.475-477
    • /
    • 2002
  • 자동 문서 분류는 범주 특성 벡터와 입력 문서 벡터의 유사도 비교에 의해 가장 유사한 범주를 선택하는 방법이다. 문서 분류 시스템을 구현하기 위하여 각 범주의 특성 벡터를 정보 검색 시스템의 역파일 형태로 구축하였으며, 용어 가중치를 계산하는 방법을 달리하여 문서 분류 시스템의 정확도를 실험하였다. 실험 문서는 일간지의 신문기사들을 무작위로 추출한 문서 집합을 대상으로 하였으며, 정보 검색 모델에서 보편적으로 사용되는 TF-lDF 방식이 변형된 방식에 비해 더 나은 성능을 보였다.

  • PDF

A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine (종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발)

  • Hwang, Jae-Won;Jeon, Tae-Gyun;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

Semantic Extention Search for Documents Using the Word2vec (Word2vec을 활용한 문서의 의미 확장 검색방법)

  • Kim, Woo-ju;Kim, Dong-he;Jang, Hee-won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.687-692
    • /
    • 2016
  • Conventional way to search documents is keyword-based queries using vector space model, like tf-idf. Searching process of documents which is based on keywords can make some problems. it cannot recogize the difference of lexically different but semantically same words. This paper studies a scheme of document search based on document queries. In particular, it uses centrality vectors, instead of tf-idf vectors, to represent query documents, combined with the Word2vec method to capture the semantic similarity in contained words. This scheme improves the performance of document search and provides a way to find documents not only lexically, but semantically close to a query document.

Improvement of A Concept-Based Text Categorization System(TAXON) Using Weight Determination Heuristic (가중치 부여 휴리스틱을 이용한 개념 기반 문서분류기 TAXON의 개선)

  • 강원석;강현규;김영섬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.153-155
    • /
    • 1998
  • 본 논문에서는 개념을 기반으로 문서의 분류를 하는 확률벡터 모델의 분류기TAXON(Concept-based Text Categorization System)의 개선을 도모한다. TAXON은 한국어 문장을 분석하여 명사를 추출하고 명사의 개념을 시소러스 도구를 통해 획득한 후 이를 벡터화하여 주제와 입력 문서와의 관계성을 검사하는 문서 분류기이다. 본 논문은 문서 분류기 TAXON의 성능을 향상시키기 위하여 확률벡터 계산에 가중치 부여 휴리스틱을 도입한다. 그리고 시소러스 도구를 확장하여 문서 분류의 질을 높인다.

  • PDF

Main Points Extraction and Layout Vectorization of Hand-designed Forms (손으로 설계한 서식 문서의 주요점 검출 및 서식 구조 벡터화)

  • Kim, Byeong-Yong
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.519-522
    • /
    • 2001
  • 본 논문은 손으로 자유롭게 그린 서식 문서의 주요점을 검출하여 서식의 구조를 벡터화하는 방법을 제안한다. 선 성분의 주요점을 검출하여 그 구조를 벡터화하는 방법은 주로 인쇄 서식 문서의 구조 분석에 적용하기 좋은 방법이다. 이에 반해 손으로 설계한 서식 문서는 주요점 부분이 왜곡되어 있기 때문에 주요점의 검출이 손쉽게 이루어지기 곤란하다. 이 논문에서는 이러한 문제를 해결하기 위해 손으로 설계한 서식 문서를 세선화한 다음 여유 성분을 갖는 마스크를 적용하고 후처리를 통해 주요점 부분의 심한 왜곡을 보상하는 방법을 제안하여 손으로 설계한 서식 문서에서도 주요점의 검출이 가능하도록 하였다. 제안한 방법의 유효성을 확인하기 위한 실험 결과 손으로 설계한 서식의 경우 91.9%, 인쇄 서식의 경우 100%의 벡터화 성공률을 보여주어 제안한 방법이 손으로 설계한 서식 구조의 벡터화에 유효함을 확인하였다.

  • PDF

확률 벡터를 사용한 전자 문서의 개념적 분류 기법

  • 조완섭;김영렬;강원석;강현규
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.53-62
    • /
    • 1997
  • 본 논문에서는 전자문서의 개념적 분류기법을 제안한다. 기존의 문서분류는 대부분 문서에 나타난 용어를 기반으로 분류하므로 개념적인 분류가 불가능하다. 제안된 기법에서는 한국어 시소러스를 사용하여 문서에 나타난 용어 뿐 아니라 용어의 상하위 개념을 기준으로 문서를 분류할 수 있다. 특히, 제안된 방법은 확률 벡터를 사용하는 방식으로써 점진적인 학습이 가능하다는 장점도 가진다.

  • PDF

Vector Space Model for Patent Information Retrieval System (특허정보 검색을 위한 벡터스페이스 검색모텔의 적용)

  • 원상훈;노태길;손기준;박정희;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.516-518
    • /
    • 2003
  • 본 논문은 특허 문서에 맞게 벡터스페이스 모델을 적용하여 특허정보 검색기를 구현한다. 기존의 상용 특허 검색 시스템의 문제점을 제시하고, 특허 문헌의 특징을 분석하여, 이를 반영한 특허 문헌 검색등의 벡터 스페이스 모델을 제시한다. 하나의 특허 문서는 서로 상이한 특성을 지닌 텍스트와 데이터의 조합으로 이루어져 있다. 따라서 이를 하나의 벡터로 표현하는 것이 용이하지 않다. 이에 대해 본 연구에서는 내용 필드들을 특성에 따라 둘 이상의 벡터로 표현하고, 수치 및 고유명 필드는 불린검색형태로 처리되는 혼합형 벡터 모델을 제안한다. 각 필드의 특징에 맞게 색인어를 추출하며, 텍스트 필드의 색인어률 벡터로 표현하는 과정에서는 잘 알려진 TF-IDF 가중치를 사용하되, 특허 문서가 IPC 특허 분류 기준에 따라 완전 분류되어 있는 문서라는 특징을 이용, 보다 정확한 가중치를 부여한다. 실험과 성능평가를 통하여 제안한 특허 모델의 유용성을 보인다.

  • PDF

An Expansion of Vector Space for Document Classifications (문서 분류에 이용 가능한 벡터 공간의 확장 방법)

  • Lee, Samuel Sangkon;Yoo, Kyungseok
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.782-784
    • /
    • 2015
  • 본 논문에서는 한국어 문서의 분류 정밀도 향상을 위해 애매어와 해소어 정보를 이용한 확장된 벡터 공간 모델을 제안하였다. 벡터 공간 모델에 사용된 벡터는 같은 정도의 가중치를 갖는 축이 하나 더 존재하지만, 기존의 방법은 그 축에 아무런 처리가 이루어지지 않았기 때문에 벡터끼리의 비교를 할 때 문제가 발생한다. 같은 가중치를 갖는 축이 되는 단어를 애매어라 정의하고, 단어와 분야 사이의 상호정보량을 계산하여 애매어를 결정하였다. 애매어에 의해 애매성을 해소하는 단어를 해소어라 정의하고, 애매어와 동일한 문서에서 출현하는 단어 중에서 상호정보량을 계산하여 해소어의 세기를 결정하였다. 본 논문에서는 애매어와 해소어를 이용하여 벡터의 차원을 확장하여 문서 분류의 정밀도를 향상시키는 방법을 제안하였다.

Information Retrieval Model Using Anchor Text Information and Link Information (Anchor Text 정보와 링크 정보를 이용한 정보 검색 모델)

  • 한기덕;정성원;허희근;이교운;권혁철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.916-918
    • /
    • 2004
  • 90년대 이전에 정보 검색에 대한 연구는 문서의 내용을 기반으로 한 연구가 주류였으며, 90년대에는 링크를 이용한 연구가 활발하였다. 90년대 말에 Page Rank와 HITS가 링크를 이용한 연구의 대표적 사례이며, 최근에는 문서의 내용과 링크 정보를 같이 이용하는 연구가 많이 발표되고 있다. 본 논문도 문서의 정보와 링크 정보를 이용한 새로운 검색 모델을 제시하고자 한다. 본 논문에서 사용하는 링크 정보는 수집된 문서에서 추출한 Page Rank의 가중치와 한 페이지를 가리키는 링크들의 목록이며, 상용하고자 하는 문서의 정보는 본문 내용과 Anchor Text이다. 링크 정보와 문서 정보를 이용하여 Anchor 벡터와 문서 벡터를 만들고, 각각 질의어 벡터와 Cosine Measure를 하여 값을 구한 후, 더한 값을 해당 문서의 가중치로 하여 검색에 이용한다.

  • PDF

Multi-Vector Document Embedding Using Semantic Decomposition of Complex Documents (복합 문서의 의미적 분해를 통한 다중 벡터 문서 임베딩 방법론)

  • Park, Jongin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.19-41
    • /
    • 2019
  • According to the rapidly increasing demand for text data analysis, research and investment in text mining are being actively conducted not only in academia but also in various industries. Text mining is generally conducted in two steps. In the first step, the text of the collected document is tokenized and structured to convert the original document into a computer-readable form. In the second step, tasks such as document classification, clustering, and topic modeling are conducted according to the purpose of analysis. Until recently, text mining-related studies have been focused on the application of the second steps, such as document classification, clustering, and topic modeling. However, with the discovery that the text structuring process substantially influences the quality of the analysis results, various embedding methods have actively been studied to improve the quality of analysis results by preserving the meaning of words and documents in the process of representing text data as vectors. Unlike structured data, which can be directly applied to a variety of operations and traditional analysis techniques, Unstructured text should be preceded by a structuring task that transforms the original document into a form that the computer can understand before analysis. It is called "Embedding" that arbitrary objects are mapped to a specific dimension space while maintaining algebraic properties for structuring the text data. Recently, attempts have been made to embed not only words but also sentences, paragraphs, and entire documents in various aspects. Particularly, with the demand for analysis of document embedding increases rapidly, many algorithms have been developed to support it. Among them, doc2Vec which extends word2Vec and embeds each document into one vector is most widely used. However, the traditional document embedding method represented by doc2Vec generates a vector for each document using the whole corpus included in the document. This causes a limit that the document vector is affected by not only core words but also miscellaneous words. Additionally, the traditional document embedding schemes usually map each document into a single corresponding vector. Therefore, it is difficult to represent a complex document with multiple subjects into a single vector accurately using the traditional approach. In this paper, we propose a new multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. This study targets documents that explicitly separate body content and keywords. In the case of a document without keywords, this method can be applied after extract keywords through various analysis methods. However, since this is not the core subject of the proposed method, we introduce the process of applying the proposed method to documents that predefine keywords in the text. The proposed method consists of (1) Parsing, (2) Word Embedding, (3) Keyword Vector Extraction, (4) Keyword Clustering, and (5) Multiple-Vector Generation. The specific process is as follows. all text in a document is tokenized and each token is represented as a vector having N-dimensional real value through word embedding. After that, to overcome the limitations of the traditional document embedding method that is affected by not only the core word but also the miscellaneous words, vectors corresponding to the keywords of each document are extracted and make up sets of keyword vector for each document. Next, clustering is conducted on a set of keywords for each document to identify multiple subjects included in the document. Finally, a Multi-vector is generated from vectors of keywords constituting each cluster. The experiments for 3.147 academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the proposed multi-vector based method, we ascertained that complex documents can be vectorized more accurately by eliminating the interference among subjects.