With the development of the Internet, users share their experiences and opinions. Since related keywords are used witho0ut considering information such as the general emotion or genre of an unstructured document such as a movie review, the sensitivity accuracy according to the appropriate emotional situation is impaired. Therefore, we propose a system that predicts emotions based on information such as the genre to which the unstructured document created by users belongs or overall emotions. First, representative keyword related to emotion sets such as Joy, Anger, Fear, and Sadness are extracted from the unstructured document, and the normalized weights of the emotional feature words and information of the unstructured document are trained in a system that combines CNN and LSTM as a training set. Finally, by testing the refined words extracted through movie information, morpheme analyzer and n-gram, emoticons, and emojis, it was shown that the accuracy of emotion prediction using emotions and F-measure were improved. The proposed prediction system can predict sentiment appropriately according to the situation by avoiding the error of judging negative due to the use of sad words in sad movies and scary words in horror movies.
Kim, Taek-Hyun;Cho, Dan-Bi;Lee, Hyun-Young;Won, Hye-Jin;Kang, Seung-Shik
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.975-977
/
2020
감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.
Generally speaking, a document is a mutual promise between two parties and functions as a legally-binding trust for a transaction. A document should be produced on a mutual agreement basis, and its credibility shall be attained if the transparency of a document production is ensured. Therefore, sequence analysis of the procedures in a document production is very important for appraisal of a document. The purpose of this research is to distinguish sequence association between the erased carbon ingredients of a pencil and the ingredients left in a ball-point pen and thus suggest a method that determines whether mutual agreement was applied or not in signing an insurance policy. This method analyzes if the carbon ingredients of a pencil are left in the bottom section of a ball-point pen through infrared photography. If the carbon ingredients of a pencil are left in the bottom section of a pen, the pen shall absorb infrared rays and mark a dense concentration. This method applies a relatively simple infrared photography system and therefore shall be beneficial to a personal appraisal store.
This paper proposes how to improve performance of the Korean document sentiment-classification system using semantic properties of the sentiment words. A sentiment word means a word with sentiment, and sentiment features are defined by a set of the sentiment words which are important lexical resource for the sentiment classification. Sentiment feature represents different sentiment intensity in general field and in specific domain. In general field, we can estimate the sentiment intensity using a snippet from a search engine, while in specific domain, training data can be used for this estimation. When the sentiment intensity of the sentiment features are estimated, it is called semantic orientation and is used to estimate the sentiment intensity of the sentences in the text documents. After estimating sentiment intensity of the sentences, we apply that to the weights of sentiment features. In this paper, we evaluate our system in three different cases such as general, domain-specific, and general/domain-specific semantic orientation using support vector machine. Our experimental results show the improved performance in all cases, and, especially in general/domain-specific semantic orientation, our proposed method performs 3.1% better than a baseline system indexed by only content words.
Seo, Hyeong-Won;Noh, Kyung-Mok;Cheon, Min-A;Kim, Jae-Hoon
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.123-125
/
2012
본 논문은 기계 학습을 이용한 감정 분류에 필요한 학습 말뭉치를 효율적으로 확장하는 방법에 대하여 기술한다. 학습 말뭉치는 일반적으로 그에 알맞은 레이블을 정해야 하는데, 그 양이 어마어마하기 때문에 이 과정을 일일이 사람이 할 수는 없다. 그에 대한 해결책으로써 이미 많은 준지도학습 방법이 연구되었고, 그것을 트윗이라는 짧은 문서를 감정 분류하는 것에 적용해도 감정 문서 분류기의 성능이 좋다는 결과를 확인하였다.
In this paper, we designed and developed an Emotional Speech Synthesis Markup Language (SSML) processor. Multi-speaker emotional speech synthesis technology that can express multiple voice colors and emotional expressions have been developed, and we designed Emotional SSML by extending SSML for multiple voice colors and emotional expressions. The Emotional SSML processor has a graphic user interface and consists of following four components. First, a multi-speaker emotional text editor that can easily mark specific voice colors and emotions on desired positions. Second, an Emotional SSML document generator that creates an Emotional SSML document automatically from the result of the multi-speaker emotional text editor. Third, an Emotional SSML parser that parses the Emotional SSML document. Last, a sequencer to control a multi-speaker and emotional Text-to-Speech (TTS) engine based on the result of the Emotional SSML parser. Based on SSML which is a programming language and platform independent open standard, the Emotional SSML processor can easily integrate with various speech synthesis engines and facilitates the development of multi-speaker emotional text-to-speech applications.
Recently, deep learning encoder-based approach has been actively applied in the field of sentiment classification. However, Long Short-Term Memory network deep learning encoder, the commonly used architecture, lacks the quality of vector representation when the length of the documents is prolonged. In this study, for effective classification of the sentiment documents, we suggest the use of attention method-based deep learning encoder that generates document vector representation by weighted sum of the outputs of Long Short-Term Memory network based on importance. In addition, we propose methods to modify the attention method-based deep learning encoder to suit the sentiment classification field, which consist of a part that is to applied to window attention method and an attention weight adjustment part. In the window attention method part, the weights are obtained in the window units to effectively recognize feeling features that consist of more than one word. In the attention weight adjustment part, the learned weights are smoothened. Experimental results revealed that the performance of the proposed method outperformed Long Short-Term Memory network encoder, showing 89.67% in accuracy criteria.
Journal of Advanced Marine Engineering and Technology
/
v.34
no.6
/
pp.871-879
/
2010
In this paper, we present a system that classifies comments on a news article into a user opinion called a polarity (positive or negative). The system is a kind of document classification system for comments and is based on machine learning techniques like support vector machine. Unlike normal documents, comments have their body that can influence classifying their opinions as polarities. In this paper, we propose a feature weighting scheme using such characteristics of comments and several resources for opinion classification. Through our experiments, the weighting scheme have turned out to be useful for opinion classification in comments on Korean news articles. Also Korean character n-grams (bigram or trigram) have been revealed to be helpful for opinion classification in comments including lots of Internet words or typos. In the future, we will apply this scheme to opinion analysis of comments of product reviews as well as news articles.
Kim, Sang-Do;Yoon, Hee-Geun;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.56-60
/
2009
오늘날 인터넷은 개인의 감정, 의견을 서로 공유할 수 있는 공간이 되고 있다. 하지만 인터넷에는 너무나 방대한 문서가 존재하기 때문에 다른 사용자들의 감정, 의견 정보를 개인의 의사 결정에 활용하기가 쉽지 않다. 최근 들어 감정이나 의견을 자동으로 추출하기 위한 연구가 활발하게 진행되고 있으며, 감정 분석에 관한 기존 연구들은 대부분 어구의 극성(polarity) 정보가 있는 감정 사전을 사용하고 있다. 하지만 인터넷에는 나날이 신조어가 새로 생기고 언어 파괴 현상이 자주 일어나기 때문에 사전에 기반한 방법은 한계가 있다. 본 논문은 감정 분석 문제를 긍정과 부정으로 구분하는 이진 분류 문제로 본다. 이진 분류 문제에서 탁월한 성능을 보이는 Support Vector Machines(SVM)을 사용하며, 문서들 간의 유사도 계산을 위해 문장의 부분 문자열을 비교하는 문자열 커널을 사용한다. 실험 결과, 실제 영화평에서 제안된 모델이 비교 대상으로 삼은 Bag of Words(BOW) 모델보다 안정적인 성능을 보였다.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.487-490
/
2004
이메일과 같은 텍스트 기반의 서비스 둥이 점차 대중화되고 있지만, 이러한 텍스트 기반의 서비스에서는 메시지를 전달할 때 수신자가 필자의 감정 상태를 정확하게 파악하기 어려운 문제가 있다. 이러한 문제를 단편적으로 해결하기 위하여 감정 상태를 나타내는 이모티콘(emoticon)을 사용하기도 하지만 이는 보편적이지 않아서 사용하기에 불편한 점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위한 방안으로 일반 텍스트 문서에 감정 태그를 삽입하여 필자의 감정을 표현할 수 있도록 새로운 마크업 언어인 EmoXML(Emotion XML)을 정의한다. 그리고 문장 내에 포함되어 있는 감정 어휘를 인식하여, 관련 감정 태그를 자동으로 생성하고 처리할 수 있는 시스템을 설계한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.