• Title/Summary/Keyword: 문맥 어휘

Search Result 119, Processing Time 0.026 seconds

Query Context Information-Based Translation Models for Korean-Japanese Cross-Language Informal ion Retrieval (한-일 교차언어검색에서의 질의 문맥 정보를 이용한 대역어 변환 확률 모델)

  • Lee, Gyu-Chan;Kang, In-Su;Na, Seung-Hoon;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.97-104
    • /
    • 2005
  • 교차언어 검색 과정에서는 질의나 문서의 언어를 일치시키기 위한 변환 과정이 필수적이며, 이런 변환 과정에서 어휘의 중의성으로 인해 하나의 어휘에 대응하는 다수의 대역어가 생성됨으로써 사용자의 정보 욕구를 왜곡시켜 검색의 성능을 저하시킬 수 있다. 본 논문에서는 어휘 중의성 문제를 해결하기 위해서 질의의 문맥 정보를 이용하여 변환 질의의 확률을 구함으로써 중의성을 해소하는 방식을 제시하고, 질의의 길이, 중의도, 중의성을 가진 어휘의 비율 등에 따라서 성능이 어떻게 변하는지 비교함으로써 이 방법의 장점과 단점을 분석한다. 또한 현재의 단점을 보완하기 위한 차후 연구 방향을 제시한다.

  • PDF

Implementation of Sentence Construction using Lexical Information (어휘 정보를 이용한 문장완성의 구현)

  • 황인정;이은실;민홍기
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.10-13
    • /
    • 2003
  • 본 연구는 어휘 정보를 이용하여 구어체 문장구성을 하였다. 구어체 문장구성의 목적은 언어생활이 불편한 사람들을 위한 통신보조기기에 사용하기 위해서이다. 통신보조기기는 사용자가 원하는 문장을 만들어 음성으로 출력해주는 시스템이다. 그러므로 문장을 구성하기 위해서 어휘 정보를 통신보조기기의 개념에 맞도록 변형하여 도입하였다. 어휘는 도메인별로 발췌하고 분류하였으며, 각 어휘에 대해 시소러스와 하위범주화사전을 만들었다. 어휘정보에 관한 상세한 정보는 문장구성과 재사용 그리고 문맥상 어색한 문장검출을 위해 중요한 자료가 된다.

  • PDF

The Processing and Representations of Ambiguos Morpheme in Korean Words : Centered in Aphasics. (한국어 중의적 형태소 표상양식과 처리 특성 : 실어증 환자를 중심으로)

  • 정재범;편성범;김태훈;남기춘
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.151-156
    • /
    • 2002
  • 중의적인 단어를 처리하는 방법에 대한 선행연구로, 첫째 문맥에 맞는 의미가 먼저 활성화된다는 가설과 둘째, 여러 뜻 중에 상대적인 빈도에 따라 많이 쓰이는 의미가 먼저 활성화되고, 그것이 문맥과 일치하지 않는다면, 다른 관련된 의미를 찾는다는 가설이 제기되었다. 마지막으로 문맥에 상관없이 모든 의미가 활성화 된 후 문맥을 고려하여 문맥에 적절한 의미를 선택한다는 가설이 있다. 본 연구에서는 '먹을', '감을' 등과 같이 2가지 의미의 품사가 다른 중의 어절과 '쥐어', '감어' 등과 같이 어절 문맥('어')이 주어진 어절의 의미 활성화가 어떻게 다른지를 조사하였다. 본 연구의 목적을 위해 점화어휘 판단 과제를 사용하였다. 실험 1의 결과는 SOA 150ms 조건에서 점화자극어절과 관련된 의미가 품사와 관련 없이 모두 활성화되었다. SOA 1000ms 조건에서는 상대적으로 많이 쓰이는 체언의 의미는 계속 활성화 되어 있는 반면, 용언의 의미 점화량은 감소하였다. 명칭성 실어증 환자인 SDK의 경우 SOA 150ms 조건에서는 일반인과 같은 형태소 처리특성을 보였으나 1000ms 조건에서는 달랐다. 다른 명칭성 실어증 환자인 BIS과 전반성 실어증 환자인 PSB는 SOA 150ms 조건과 1000ms 조건에서 일반인과 아주 다른 양상을 보였다. 이것은 실어증 환자의 타잎에 따라 형태소의 처리나 중의적인 의미 활성화가 일반인과는 다르다는 것을 보여준다. 실험 2에서는 어절 문맥이 있는 '먹어', '쥐어', '감어' 등과 같은 어절을 사용하였다. 실험 2의 결과는 SOA 150ms 조건일 때 어절문맥의 영향으로 용언의 의미만 촉진적 점화효과가 있었고, 체언의 의미는 활성화되지 않았다. 그러나 SOA 1000ms로 지연시켰을 때는 용언뿐만 아니라 체언의 의미도 촉진적 점화효과가 있었다. 실험 1과 2의 결과는 중의적인 한국어 어절의 경우에도 모든 의미가 활성화되나 어절 문맥이 존재할 때는 어절 문맥의 제약으로 어절 문맥에 맞는 한 가지 의미만 활성화된다는 것을 암시한다. 또한 이러한 결과는 한국어 어절이 분석된 형태가 아닌 어절 형태로 심성 어휘집에 저장되어 있다는 것을 암시한다. 실어증 환자의 경우 실험 1과 마찬가지로 환자의 수준이나 종류에 따라 다양한 반응을 보여주었다.

  • PDF

Emotion Analysis Using a Bidirectional LSTM for Word Sense Disambiguation (양방향 LSTM을 적용한 단어의미 중의성 해소 감정분석)

  • Ki, Ho-Yeon;Shin, Kyung-shik
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.197-208
    • /
    • 2020
  • Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.

A Sentiment Classification Method Using Context Information in Product Review Summarization (상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법)

  • Yang, Jung-Yeon;Myung, Jae-Seok;Lee, Sang-Goo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.254-262
    • /
    • 2009
  • As the trend of e-business activities develop, customers come into contact with products through on-line shopping sites and lots of customers refer product reviews before the purchasing on-line. However, as the volume of product reviews grow, it takes a great deal of time and effort for customers to read and evaluate voluminous product reviews. Lately, attention is being paid to Opinion Mining(OM) as one of the effective solutions to this problem. In this paper, we propose an efficient method for opinion sentiment classification of product reviews using product specific context information of words occurred in the reviews. We define the context information of words and propose the application of context for sentiment classification and we show the performance of our method through the experiments. Additionally, in case of word corpus construction, we propose the method to construct word corpus automatically using the review texts and review scores in order to prevent traditional manual process. In consequence, we can easily get exact sentiment polarities of opinion words in product reviews.

Performance Improvement of Bilingual Lexicon Extraction via Pivot Language and Word Alignment Tool (중간언어와 단어정렬을 통한 이중언어 사전의 자동 추출에 대한 성능 개선)

  • Kwon, Hong-Seok;Seo, Hyeung-Won;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.27-32
    • /
    • 2013
  • 본 논문은 잘 알려지지 않은 언어 쌍에 대해서 병렬말뭉치(parallel corpus)로부터 자동으로 이중언어 사전을 추출하는 방법을 제안하였다. 이 방법은 중간언어(pivot language)를 매개로 하고 문맥 벡터를 생성하기 위해 공개된 단어 정렬 도구인 Anymalign을 사용하였다. 그 결과로 초기사전(seed dictionary)을 사용한 문맥벡터의 번역 과정이 필요 없으며 통계적 방법의 약점인 낮은 빈도수를 가지는 어휘에 대한 번역 정확도를 높였다. 또한 문맥벡터의 요소 값으로 특정 임계값 이상을 가지는 양방향 번역 확률 정보를 사용하여 상위 5위 이내의 번역 정확도를 크게 높였다. 본 논문은 두 개의 서로 다른 언어 쌍 한국어-스페인어 그리고 한국어-프랑스어 양방향에 대해서 각각 이중언어 사전을 추출하는 실험을 하였다. 높은 빈도수를 가지는 어휘에 대한 번역 정확도는 이전 연구에서 보인 실험 결과에 비해 최소 3.41% 최대 67.91%의 성능 향상을 보였고 낮은 빈도수를 가지는 어휘에 대한 번역 정확도는 최소 5.06%, 최대 990%의 성능 향상을 보였다.

  • PDF

A Study on the Variable Vocabulary Speech Recognition in the Vocabulary-Independent Environments (어휘독립 환경에서의 가변어휘 음성인식에 관한 연구)

  • 황병한
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.369-372
    • /
    • 1998
  • 본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.

  • PDF

A Method for Precision Improvement Based on Core Query Clusters and Term Proximity (핵심질의 클러스터와 단어 근접도를 이용한 문서 검색 정확률 향상 기법)

  • Jang, Kye-Hun;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.399-404
    • /
    • 2010
  • In this paper, we propose a method for precision improvement based on core clusters and term proximity. The method is composed by three steps. The initial retrieval documents are clustered based on query term combination, which occurred in the document. Core clusters are selected by using proximity between query terms. Then, the documents in core clusters are reranked based on context information of query. On TREC AP test collection, experimental results in precision at the top documents(P@100) show that the proposed method improved 11.2% over the language model.

Adaptive English Context-Sensitive Spelling Error Correction Techniques for Language Environments (언어 사용환경에 적응적인 영어 문맥의존 철자오류 교정 기법)

  • Kim, Minho;Jin, Jingzhi;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.133-136
    • /
    • 2015
  • 문서 교정기에서 문맥의존 철자오류를 교정하는 방법은 크게 규칙을 이용한 방법과 통계 정보를 이용한 방법으로 나뉜다. 한국어와 달리 영어는 오래전부터 통계 모형에 기반을 둔 문맥의존 철자오류 교정 연구가 활발히 이루어졌다. 그러나 대부분 연구가 문맥의존 철자오류 교정 문제를 특정 어휘 쌍을 이용한 분류 문제로 간주하기 때문에 실제 응용에는 한계가 있다. 또한, 대규모 말뭉치에서 추출한 통계 정보를 이용하지만, 통계 정보 자체에 오류가 있을 경우를 고려하지 않았다. 본 논문에서는 텍스트에 포함된 모든 단어에 대하여 문맥의존 철자오류 여부를 판단하고, 해당 단어가 오류일 경우 대치어를 제시하는 영어 문맥의존 철자오류 교정 기법을 제안한다. 또한, 통계 정보의 오류가 문맥의존 철자오류 교정에 미치는 영향과 오류 발생률의 변화가 철자오류 검색과 교정의 정확도와 재현율에 미치는 영향을 분석한다. 구글 웹데이터에서 추출한 통계 정보를 바탕으로 통계 모형을 구성하고 평가를 위해 브라운 말뭉치에서 무작위로 2,000문장을 추출하여 무작위로 문맥의존 철자오류를 생성하였다. 실험결과, 문맥의존 철자오류 검색의 정확도와 재현율은 각각 98.72%, 95.79%였으며, 문맥의존 철자오류 교정의 정확도와 재현률은 각각 71.94%, 69.81%였다.

  • PDF

Automatic Error Correction System for Erroneous SMS Strings (SMS 변형된 문자열의 자동 오류 교정 시스템)

  • Kang, Seung-Shik;Chang, Du-Seong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06a
    • /
    • pp.59-60
    • /
    • 2007
  • 휴대폰과 메신저 등 통신 환경에서 사용되는 표준어가 아닌 SMS의 변형된 어휘 및 띄어쓰기 오류를 자동으로 교정하여 형태소 분석 및 품사 태깅의 성능 저하 문제를 방지하는 문자열 오류의 교정 방법을 제안하였다. 통신 어휘들의 문자열 사전 구축 방법으로 통신어휘집을 기반으로 수동으로 구축하는 방법과 수작업으로 구축된 말뭉치로부터 자동으로 변형된 문자열을 추출하는 방법, 그리고 문맥을 고려하는 방법을 비교-분석하고 실험 및 성능 평가 결과를 제시하였다.

  • PDF