Annual Conference on Human and Language Technology
/
2005.10a
/
pp.97-104
/
2005
교차언어 검색 과정에서는 질의나 문서의 언어를 일치시키기 위한 변환 과정이 필수적이며, 이런 변환 과정에서 어휘의 중의성으로 인해 하나의 어휘에 대응하는 다수의 대역어가 생성됨으로써 사용자의 정보 욕구를 왜곡시켜 검색의 성능을 저하시킬 수 있다. 본 논문에서는 어휘 중의성 문제를 해결하기 위해서 질의의 문맥 정보를 이용하여 변환 질의의 확률을 구함으로써 중의성을 해소하는 방식을 제시하고, 질의의 길이, 중의도, 중의성을 가진 어휘의 비율 등에 따라서 성능이 어떻게 변하는지 비교함으로써 이 방법의 장점과 단점을 분석한다. 또한 현재의 단점을 보완하기 위한 차후 연구 방향을 제시한다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2003.06a
/
pp.10-13
/
2003
본 연구는 어휘 정보를 이용하여 구어체 문장구성을 하였다. 구어체 문장구성의 목적은 언어생활이 불편한 사람들을 위한 통신보조기기에 사용하기 위해서이다. 통신보조기기는 사용자가 원하는 문장을 만들어 음성으로 출력해주는 시스템이다. 그러므로 문장을 구성하기 위해서 어휘 정보를 통신보조기기의 개념에 맞도록 변형하여 도입하였다. 어휘는 도메인별로 발췌하고 분류하였으며, 각 어휘에 대해 시소러스와 하위범주화사전을 만들었다. 어휘정보에 관한 상세한 정보는 문장구성과 재사용 그리고 문맥상 어색한 문장검출을 위해 중요한 자료가 된다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2002.05a
/
pp.151-156
/
2002
중의적인 단어를 처리하는 방법에 대한 선행연구로, 첫째 문맥에 맞는 의미가 먼저 활성화된다는 가설과 둘째, 여러 뜻 중에 상대적인 빈도에 따라 많이 쓰이는 의미가 먼저 활성화되고, 그것이 문맥과 일치하지 않는다면, 다른 관련된 의미를 찾는다는 가설이 제기되었다. 마지막으로 문맥에 상관없이 모든 의미가 활성화 된 후 문맥을 고려하여 문맥에 적절한 의미를 선택한다는 가설이 있다. 본 연구에서는 '먹을', '감을' 등과 같이 2가지 의미의 품사가 다른 중의 어절과 '쥐어', '감어' 등과 같이 어절 문맥('어')이 주어진 어절의 의미 활성화가 어떻게 다른지를 조사하였다. 본 연구의 목적을 위해 점화어휘 판단 과제를 사용하였다. 실험 1의 결과는 SOA 150ms 조건에서 점화자극어절과 관련된 의미가 품사와 관련 없이 모두 활성화되었다. SOA 1000ms 조건에서는 상대적으로 많이 쓰이는 체언의 의미는 계속 활성화 되어 있는 반면, 용언의 의미 점화량은 감소하였다. 명칭성 실어증 환자인 SDK의 경우 SOA 150ms 조건에서는 일반인과 같은 형태소 처리특성을 보였으나 1000ms 조건에서는 달랐다. 다른 명칭성 실어증 환자인 BIS과 전반성 실어증 환자인 PSB는 SOA 150ms 조건과 1000ms 조건에서 일반인과 아주 다른 양상을 보였다. 이것은 실어증 환자의 타잎에 따라 형태소의 처리나 중의적인 의미 활성화가 일반인과는 다르다는 것을 보여준다. 실험 2에서는 어절 문맥이 있는 '먹어', '쥐어', '감어' 등과 같은 어절을 사용하였다. 실험 2의 결과는 SOA 150ms 조건일 때 어절문맥의 영향으로 용언의 의미만 촉진적 점화효과가 있었고, 체언의 의미는 활성화되지 않았다. 그러나 SOA 1000ms로 지연시켰을 때는 용언뿐만 아니라 체언의 의미도 촉진적 점화효과가 있었다. 실험 1과 2의 결과는 중의적인 한국어 어절의 경우에도 모든 의미가 활성화되나 어절 문맥이 존재할 때는 어절 문맥의 제약으로 어절 문맥에 맞는 한 가지 의미만 활성화된다는 것을 암시한다. 또한 이러한 결과는 한국어 어절이 분석된 형태가 아닌 어절 형태로 심성 어휘집에 저장되어 있다는 것을 암시한다. 실어증 환자의 경우 실험 1과 마찬가지로 환자의 수준이나 종류에 따라 다양한 반응을 보여주었다.
Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.
As the trend of e-business activities develop, customers come into contact with products through on-line shopping sites and lots of customers refer product reviews before the purchasing on-line. However, as the volume of product reviews grow, it takes a great deal of time and effort for customers to read and evaluate voluminous product reviews. Lately, attention is being paid to Opinion Mining(OM) as one of the effective solutions to this problem. In this paper, we propose an efficient method for opinion sentiment classification of product reviews using product specific context information of words occurred in the reviews. We define the context information of words and propose the application of context for sentiment classification and we show the performance of our method through the experiments. Additionally, in case of word corpus construction, we propose the method to construct word corpus automatically using the review texts and review scores in order to prevent traditional manual process. In consequence, we can easily get exact sentiment polarities of opinion words in product reviews.
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.27-32
/
2013
본 논문은 잘 알려지지 않은 언어 쌍에 대해서 병렬말뭉치(parallel corpus)로부터 자동으로 이중언어 사전을 추출하는 방법을 제안하였다. 이 방법은 중간언어(pivot language)를 매개로 하고 문맥 벡터를 생성하기 위해 공개된 단어 정렬 도구인 Anymalign을 사용하였다. 그 결과로 초기사전(seed dictionary)을 사용한 문맥벡터의 번역 과정이 필요 없으며 통계적 방법의 약점인 낮은 빈도수를 가지는 어휘에 대한 번역 정확도를 높였다. 또한 문맥벡터의 요소 값으로 특정 임계값 이상을 가지는 양방향 번역 확률 정보를 사용하여 상위 5위 이내의 번역 정확도를 크게 높였다. 본 논문은 두 개의 서로 다른 언어 쌍 한국어-스페인어 그리고 한국어-프랑스어 양방향에 대해서 각각 이중언어 사전을 추출하는 실험을 하였다. 높은 빈도수를 가지는 어휘에 대한 번역 정확도는 이전 연구에서 보인 실험 결과에 비해 최소 3.41% 최대 67.91%의 성능 향상을 보였고 낮은 빈도수를 가지는 어휘에 대한 번역 정확도는 최소 5.06%, 최대 990%의 성능 향상을 보였다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.369-372
/
1998
본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.
In this paper, we propose a method for precision improvement based on core clusters and term proximity. The method is composed by three steps. The initial retrieval documents are clustered based on query term combination, which occurred in the document. Core clusters are selected by using proximity between query terms. Then, the documents in core clusters are reranked based on context information of query. On TREC AP test collection, experimental results in precision at the top documents(P@100) show that the proposed method improved 11.2% over the language model.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.133-136
/
2015
문서 교정기에서 문맥의존 철자오류를 교정하는 방법은 크게 규칙을 이용한 방법과 통계 정보를 이용한 방법으로 나뉜다. 한국어와 달리 영어는 오래전부터 통계 모형에 기반을 둔 문맥의존 철자오류 교정 연구가 활발히 이루어졌다. 그러나 대부분 연구가 문맥의존 철자오류 교정 문제를 특정 어휘 쌍을 이용한 분류 문제로 간주하기 때문에 실제 응용에는 한계가 있다. 또한, 대규모 말뭉치에서 추출한 통계 정보를 이용하지만, 통계 정보 자체에 오류가 있을 경우를 고려하지 않았다. 본 논문에서는 텍스트에 포함된 모든 단어에 대하여 문맥의존 철자오류 여부를 판단하고, 해당 단어가 오류일 경우 대치어를 제시하는 영어 문맥의존 철자오류 교정 기법을 제안한다. 또한, 통계 정보의 오류가 문맥의존 철자오류 교정에 미치는 영향과 오류 발생률의 변화가 철자오류 검색과 교정의 정확도와 재현율에 미치는 영향을 분석한다. 구글 웹데이터에서 추출한 통계 정보를 바탕으로 통계 모형을 구성하고 평가를 위해 브라운 말뭉치에서 무작위로 2,000문장을 추출하여 무작위로 문맥의존 철자오류를 생성하였다. 실험결과, 문맥의존 철자오류 검색의 정확도와 재현율은 각각 98.72%, 95.79%였으며, 문맥의존 철자오류 교정의 정확도와 재현률은 각각 71.94%, 69.81%였다.
Proceedings of the Korean Information Science Society Conference
/
2007.06a
/
pp.59-60
/
2007
휴대폰과 메신저 등 통신 환경에서 사용되는 표준어가 아닌 SMS의 변형된 어휘 및 띄어쓰기 오류를 자동으로 교정하여 형태소 분석 및 품사 태깅의 성능 저하 문제를 방지하는 문자열 오류의 교정 방법을 제안하였다. 통신 어휘들의 문자열 사전 구축 방법으로 통신어휘집을 기반으로 수동으로 구축하는 방법과 수작업으로 구축된 말뭉치로부터 자동으로 변형된 문자열을 추출하는 방법, 그리고 문맥을 고려하는 방법을 비교-분석하고 실험 및 성능 평가 결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.