• 제목/요약/키워드: 문맥독립모델

검색결과 36건 처리시간 0.016초

질의 어휘와의 근접도를 반영한 단어 그래프 기반 질의 확장 (Query Expansion based on Word Graph using Term Proximity)

  • 장계훈;이경순
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.37-42
    • /
    • 2012
  • 잠정적 적합성 피드백모델은 초기 검색 결과의 상위에 순위화된 문서를 적합 문서라 가정하고, 상위문서에서 빈도가 높은 어휘를 확장 질의로 선택한다. 빈도수를 이용한 질의 확장 방법의 단점은 문서 안에서 포함된 어휘들 사이의 근접도에 상관없이 각 어휘를 독립적으로 생각한다는 것이다. 본 논문에서는 어휘빈도를 이용한 질의 확장을 대체할 수 있는 어휘 근접도를 반영한 단어 그래프 기반 질의 확장을 제안한다. 질의 어휘 주변에 발생한 어휘들을 노드로 표현하고, 어휘들 사이의 근접도를 에지의 가중치로 하여 단어 그래프를 표현한다. 반복된 연산을 통해 확장 질의를 선택함으로써 성능을 향상시키는 기법을 제안한다. 유효성 검증을 위해 웹문서 집합인 TREC WT10g 테스트 컬렉션에 대한 실험에서 언어모델 보다 MAP 평가 기준에서 6.4% 향상됨을 보였다.

정규화 신뢰도를 이용한 핵심어 검출 성능향상 (Improvement of Keyword Spotting Performance Using Normalized Confidence Measure)

  • 김철;이경록;김진영;최승호;최승호
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.380-386
    • /
    • 2002
  • Rahim의 논문 (M.G. Rahim, et al., PROC. of ICASSP96, 1996)과 같은 기존의 후처리 방법은 음소 모델과 반모델 (anti-model)의 유사도를 이용하여 음소 단위 신뢰도를 계산하고, 이들의 평균을 단어 단위 신뢰도로 정의한다. 그런데 음소단위의 신뢰도가 동일한 확률밀도함수를 갖는 것이 아니기 때문에 특정단어의 경우 계산된 신뢰도는 대체로 낮은 값을 갖는다. 이를 극복하기 위한 방법으로서, 본 논문에서는 기존의 신뢰도를 통계적으로 정규화한 신뢰도를 제안한다. 즉 음소단위의 신뢰도가 가우시안 분포를 갖는다고 가정한 후 트라이 폰(sri-phone) 단위로 정규화하여 동일한 정규분포를 갖도록 한다. 본 논문에서는 제안된 방법의 검증을 위하여 문맥종속 핵심어 모델과 문맥독립 필러 모델을 이용한 일반적인 핵심어 검출기를 사용하였다. 실험결과 제안된 정규화 신뢰도 (NCM: Normalized Confidence Measure)가 불검출율 (WDR: Missed Detection Rate) 8%정도에서 오검출율 (PAR: false alarm rate)을 0.44에서 0.33 FA/KW/HR (false alarm/keyword/hour)로 저하시켰다. 이것은 오검출율에서 성능이 25% 향상된 것이다.

HMM에 기반한 한국어 개체명 인식 (HMM-based Korean Named Entity Recognition)

  • 황이규;윤보현
    • 정보처리학회논문지B
    • /
    • 제10B권2호
    • /
    • pp.229-236
    • /
    • 2003
  • 개체명 인식은 질의응답 시스템이나 정보 추출 시스템에서 필수 불가결한 과정이다. 이 논문에서는 HMM 기반의 복합 명사 구성 원리를 이용한 한국어 개체명 인식 방법에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있다. 또한, 하나의 개체명을 구성하는 단어들 사이와 개체명과 개체명 주위의 단어 사이에도 문맥적 관계를 가지고 있다. 본 논문에서는 단어들을 개체명 독립 단어, 개체명 구성 단어, 개체명 인접 단어로 분류하고, 개체명 관련 단어 유형과 품사를 기반으로 HMM을 학습하였다. 본 논문에서 제안하는 개체명 인식 시스템은 가변길이의 개체명을 인식하기 위해 트라이그램 모델을 사용하였다. 트라이그램 모델을 이용한 HMM은 데이터 부족 문제를 가지고 있으며, 이를 해결하기 위해 다단계 백-오프를 이용하였다. 경제 분야 신문기사를 이용한 실험 결과 F-measure 97.6%의 결과를 얻었다.

화자식별 시스템의 계산량 감소를 위한 화자 프루닝 방법 (A Speaker Pruning Method for Reducing Calculation Costs of Speaker Identification System)

  • 김민정;오세진;정호열;정현열
    • 한국음향학회지
    • /
    • 제22권6호
    • /
    • pp.457-462
    • /
    • 2003
  • 본 논문에서는 GMM (Gaussian Mixture Model)에 기반한 문맥독립 화자식별 시스템의 식별성능 향상과 실시간 처리를 위한 계산량 감소를 위하여 화자 프루닝 (Speaker Pruning) 방법을 제안한다. 기존의 화자식별 방법인 최대유사도(Maximum Likelihood) 방법과 가중모델순위 (Weighting Model Rank) 방법, 수정된 가중모델순위 (Modified WMR) 방법 등은 입력 음성 전체와 모든 화자모델들과의 유사도를 프레임 단위로 계산하여 가장 큰 누적 유사도를 가지는 화자를 식별화자로 결정하는 방법으로써, 입력 프레임 및 등록 화자수가 늘어남에 따라 계산량 및 식별시간이 늘어나는 단점이 있었다. 이러한 단점을 해결하기 위하여, 제안방법은 입력음성 프레임의 일부분만을 이용하여 화자모델들과의 프레임 유사도를 계산한 후 계산된 유사도를 이용하여 등록화자의 상위 일부분의 화자만을 선택하고, 선택된 화자들에서만 유사도 계산을 수행함으로서 계산량 및 식별시간을 줄이는 방법이다. 또한, 화자 프루닝을 적용할 경우 화자수가 가변 되더라도 수정된 가중모델 순위방법을 적용할 수 있어 식별성능을 높일 수 있다. 식별실험결과, 제안방법을 적용한 경우 기존의 최대 유사도 방법이나 가중모델순위 방법보다 최대 65%의 계산량 및 식별시간을 감소시킬 수 있었으며, 약 2%의 향상된 식별결과를 나타내어, 본 논문에서 제안한 방법의 유효성을 확인할 수 있었다.

클라우드 자원 브로커에서 확장성 있는 가상 머신 할당 기법을 이용한 비용 적응형 작업 스케쥴링 알고리즘 (A Cost-Efficient Job Scheduling Algorithm in Cloud Resource Broker with Scalable VM Allocation Scheme)

  • ;김성환;강동기;김병상;윤찬현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권3호
    • /
    • pp.137-148
    • /
    • 2012
  • 사용자들은 자신의 작업을 처리하기 위해 자신에게만 한정된 가상 컴퓨팅 자원을 클라우드 서비스 제공자로부터 할당 받아 타 사용자로부터 독립된 환경에서 작업을 처리하게 된다. 이를 자동화된 방법으로 최적화를 대신 수행해주기 위한 모델로 브로커 미들웨어가 제시되었고 마감시간을 만족하는 이내에서 자원 이용률을 높이는 접근법으로 필요 가상 머신의 숫자를 줄여 비용을 절약한다. 이를 다루는 많은 논문들에서 작업 스케줄링은 기존 사용자들간의 독립을 보장하여 하나의 가상 머신이 하나의 작업에 한정된 가상 머신에서 처리하는 방식으로 다루어지고 있다. 하지만 기존의 SRSV 방식에서는 높은 정도의 다중 프로그래밍 작업이 아닐 경우 시스템을 효율적으로 사용하지 못한다. 이에 본 논문에서는 해당 자원을 마감시간과 스래싱(thrashing), 문맥 전환(context switching)에 따른 성능 저하를 고려한 상태에서 다중 프로그래밍 정도를 높여 낭비되는 자원을 최소화하여 비용을 절약하려고 한다. 실험 결과를 통해 제안하는 방법이 제약조건 이내에서 기존의 방식에 비해 좀 더 좋은 가격 대비 성능을 가지는 것을 보인다.

GMM 기반 실시간 문맥독립화자식별시스템의 성능향상을 위한 프레임선택 및 가중치를 이용한 Hybrid 방법 (Hybrid Method using Frame Selection and Weighting Model Rank to improve Performance of Real-time Text-Independent Speaker Recognition System based on GMM)

  • 김민정;석수영;김광수;정호열;정현열
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.512-522
    • /
    • 2002
  • 본 논문에서는 GMM(Gaussian Mixture Model)에 기반한 실시간문맥독립화자식별시스템[1][2]의 성능향상을 위하여 프레임선택(Frame Selection)방법과 프레임가중치(Weighting Model Rank)방법을 혼합한 hybrid방법을 제안한다. 본 시스템에서는 GMM의 파라미터를 최적화하기 위하여 MLE(Maximum likelihood estimation)방법과 인식 알고리즘으로 ML(Maximum Likelihood)을 기본적으로 사용하였다. 제안한 hybrid 방법은 두 단계로 이루어진다. 첫째, 화자모델과 테스트 데이터를 이용하여 프레임단위로 유사도를 계산하고, 가장 큰 유사도 값과 두 번째로 큰 유사도 값의 차를 계산한 후, 차가 문턱치보다 큰 프레임만을 선택한다 두 번째로, 선택되어진 프레임에서 계산되어진 유사도 값 대신에 가중치 값을 사용하여 전체 스코어를 계산한다. 특징 파라미터로서는 켑스트럼과 회귀계수를 사용하였으며, 학습과 테스트를 위한 데이터베이스는 채집기간이 다른 여러 데이터베이스들로 구성되어 있으며, 실험을 위한 데이터는 임의의 단어를 선택하여 사용하였다. 화자인식실험은 기본 시스템에 프레임선택방법, 프레임가중치방법, 제안한 Hybrid방법을 각각 적용하여 실험하였다. 실험결과, 프레임선택방법에 비해 평균 4%, 프레임가중치방법에 비해 평균 1%의 인식률 향상을 보여, 본 논문에서 적용한 hybrid방법의 유효성을 확인하였다.

  • PDF