• Title/Summary/Keyword: 무한 유향

Search Result 2, Processing Time 0.017 seconds

The Influence of the Infinitive Flow Direction Algorithm and Horn Slope Algorithm on the Topographic Index and Hydrological Responses of the TOPMODEL (무한 유향 알고리듬과 Horn 경사 알고리듬이 TOPMODEL 지형지수와 수문반응에 미치는 영향)

  • Byun, Jong-Min;Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.207-223
    • /
    • 2009
  • The TOPMODEL Topographic Index (TI) is widely used to predict the spatial distribution of soil moisture contents, The TI is one of terrain indices which are frequently used in spatially distributed environmental modelings. There have been studies on the evaluation and improvement of the TI. Most of them. however, have focused on only the modified multiple flow direction algorithm and algorithms for slope calculation have been paid little attention, In this research, we attempted to improve the TI by utilizing the infinitive flow direction (Dinf) algorithm and Horn slope algorithm. Then we attempt to analyze and evaluate the influence of the improved TI on hydrological responses of the TOPMODEL As a result. our approaching using the infinitive flow direction (Dinf) and Horn slope algorithm made the TI better than the multiple flow direction (MD8) - the multiple descent slope (MDS) algorithm. However, the model efficiency of discharges at the outlet was not increased. Our research may provide an insight to choose appropriate algorithms for calculating flow direction and slope in spatially distributed environmental modelings.

Development of a 2 Dimensional Numerical Landscape Evolution Model on a Geological Time Scale (2차원 지질시간 규모 수치지형발달모형의 개발)

  • Byun, Jong-Min;Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.6
    • /
    • pp.673-692
    • /
    • 2011
  • Advances in computer technology have enabled us to develop and use numerical landscape evolution models (NLEMs) for exploring the dynamics of geomorphic system from a variety of viewpoints which previously could have not been taken. However, as of yet there have been no trials using or developing NLEMs in Korea. The purpose of this research is to develop a 2 dimensional NLEM on a geological time scale and evaluate its usefulness. The newly developed NLEM (ND-NLEM) treats bedrock weathering as one of the major geomorphic processes and attempts to simulate the thickness of soil. As such it is possible to model the weathering-limited as well as the transport-limited environment on hillslopes. Moreover the ND-NLEM includes not only slow and continuous mass transport like soil creep, but also rapid and discrete mass transport like landslides. Bedrock incision is simulated in the ND-NLEM where fluvial transport capacity is large enough to move all channel bed loads, such that ND-NLEM can model the detachment-limited environment. Furthermore the ND-NLEM adopts the D-infinity algorithm when routing flows in the model domain, so it reduces distortion due to the use of the steepest descent slope flow direction algorithm. In the experiments to evaluate the usefulness of the ND-NLEM, characteristics of the channel network observed from the model results were similar to those of the case study area for comparison, and the hypsometry curve log during the experiment showed rational evidence of landscape evolution. Therefore, the ND-NLEM is shown to be useful for simulating landscape evolution on a geological time scale.